These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28250811)

  • 1. The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change?
    Chirgwin E; Marshall DJ; Sgrò CM; Monro K
    Evol Appl; 2017 Mar; 10(3):267-275. PubMed ID: 28250811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does parental environment influence the potential for adaptation to global change?
    Chirgwin E; Marshall DJ; Sgrò CM; Monro K
    Proc Biol Sci; 2018 Sep; 285(1886):. PubMed ID: 30209227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Stress Increases the Magnitude of Nonadditive Genetic Variation in Offspring Fitness in the Frog Crinia georgiana.
    Rudin-Bitterli TS; Mitchell NJ; Evans JP
    Am Nat; 2018 Oct; 192(4):461-478. PubMed ID: 30205021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal environment at fertilization mediates adaptive potential in the sea.
    Chirgwin E; Connallon T; Monro K
    Evol Lett; 2021 Apr; 5(2):154-163. PubMed ID: 33868711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing hidden evolutionary capacity to cope with global change.
    Chirgwin E; Monro K; Sgro CM; Marshall DJ
    Glob Chang Biol; 2015 Sep; 21(9):3356-66. PubMed ID: 25781417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate.
    Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R
    Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variation underlies temperature tolerance of embryos in the sea urchin Heliocidaris erythrogramma armigera.
    Lymbery RA; Evans JP
    J Evol Biol; 2013 Oct; 26(10):2271-82. PubMed ID: 23980665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic variance in fitness and its cross-sex covariance predict adaptation during experimental evolution.
    Koch EL; Sbilordo SH; Guillaume F
    Evolution; 2020 Dec; 74(12):2725-2740. PubMed ID: 33135158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive genetic variance for traits least related to fitness increases with environmental stress in the desert locust,
    Chapuis MP; Pélissié B; Piou C; Chardonnet F; Pagès C; Foucart A; Chapuis E; Jourdan-Pineau H
    Ecol Evol; 2021 Oct; 11(20):13930-13947. PubMed ID: 34707829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ambient temperatures on evolutionary potential of reproductive timing in boreal passerines.
    Vatka E; Orell M; Rytkönen S; Merilä J
    J Anim Ecol; 2021 Feb; 90(2):367-375. PubMed ID: 33090475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.
    Garcia de Leaniz C; Fleming IA; Einum S; Verspoor E; Jordan WC; Consuegra S; Aubin-Horth N; Lajus D; Letcher BH; Youngson AF; Webb JH; Vøllestad LA; Villanueva B; Ferguson A; Quinn TP
    Biol Rev Camb Philos Soc; 2007 May; 82(2):173-211. PubMed ID: 17437557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE COADAPTATION OF PARENTAL AND OFFSPRING CHARACTERS.
    Wolf JB; Brodie ED
    Evolution; 1998 Apr; 52(2):299-308. PubMed ID: 28568322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EVOLUTIONARY PREDICTABILITY IN NATURAL POPULATIONS: DO MATING SYSTEM AND NONADDITIVE GENETIC VARIANCE INTERACT TO AFFECT HERITABILITIES IN PLANTAGO LANCEOLATA?
    Tonsor SJ; Goodnight CJ
    Evolution; 1997 Dec; 51(6):1773-1784. PubMed ID: 28565103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.
    Kinsler G; Geiler-Samerotte K; Petrov DA
    Elife; 2020 Dec; 9():. PubMed ID: 33263280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic architecture of survival and fitness-related traits in two populations of Atlantic salmon.
    Houde AL; Wilson CC; Neff BD
    Heredity (Edinb); 2013 Dec; 111(6):513-9. PubMed ID: 23942281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism, growth, and the energetic definition of fitness: a quantitative genetic study in the land snail Cornu aspersum.
    Bruning A; Gaitán-Espitia JD; González A; Bartheld JL; Nespolo RF
    Physiol Biochem Zool; 2013; 86(5):538-46. PubMed ID: 23995484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immigration counter-acts local micro-evolution of a major fitness component: Migration-selection balance in free-living song sparrows.
    Reid JM; Arcese P; Nietlisbach P; Wolak ME; Muff S; Dickel L; Keller LF
    Evol Lett; 2021 Feb; 5(1):48-60. PubMed ID: 33552535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominance genetic variance for traits under directional selection in Drosophila serrata.
    Sztepanacz JL; Blows MW
    Genetics; 2015 May; 200(1):371-84. PubMed ID: 25783700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.