BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28251751)

  • 1. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.
    Kajitani K; Kato K; Nagata K
    Genes Cells; 2017 Apr; 22(4):334-347. PubMed ID: 28251751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sp1-mediated transcription regulation of TAF-Ialpha gene encoding a histone chaperone.
    Asaka MN; Murano K; Nagata K
    Biochem Biophys Res Commun; 2008 Nov; 376(4):665-70. PubMed ID: 18809386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thanatos-associated protein 7 associates with template activating factor-Ibeta and inhibits histone acetylation to repress transcription.
    Macfarlan T; Parker JB; Nagata K; Chakravarti D
    Mol Endocrinol; 2006 Feb; 20(2):335-47. PubMed ID: 16195249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Mechanism of TAF-Iβ Chaperone Function on Linker Histone H1.10.
    Feng H; Zhou BR; Schwieters CD; Bai Y
    J Mol Biol; 2022 Oct; 434(19):167755. PubMed ID: 35870650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly acidic C-terminal domain of pp32 is required for the interaction with histone chaperone, TAF-Ibeta.
    Lee IS; Oh SM; Kim SM; Lee DS; Seo SB
    Biol Pharm Bull; 2006 Dec; 29(12):2395-8. PubMed ID: 17142970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.
    Karetsou Z; Emmanouilidou A; Sanidas I; Liokatis S; Nikolakaki E; Politou AS; Papamarcaki T
    BMC Biochem; 2009 Apr; 10():10. PubMed ID: 19358706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.
    González-Arzola K; Díaz-Moreno I; Cano-González A; Díaz-Quintana A; Velázquez-Campoy A; Moreno-Beltrán B; López-Rivas A; De la Rosa MA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9908-13. PubMed ID: 26216969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Template Activating Factor-I as a chaperone in linker histone dynamics.
    Kato K; Okuwaki M; Nagata K
    J Cell Sci; 2011 Oct; 124(Pt 19):3254-65. PubMed ID: 21940793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity.
    Muto S; Senda M; Akai Y; Sato L; Suzuki T; Nagai R; Senda T; Horikoshi M
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4285-90. PubMed ID: 17360516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sperm chromatin decondensation by template activating factor I through direct interaction with basic proteins.
    Matsumoto K; Nagata K; Miyaji-Yamaguchi M; Kikuchi A; Tsujimoto M
    Mol Cell Biol; 1999 Oct; 19(10):6940-52. PubMed ID: 10490631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic action of MLL, a TRX protein with template activating factor-I, a histone chaperone.
    Shimoyama T; Kato K; Miyaji-Yamaguchi M; Nagata K
    FEBS Lett; 2005 Jan; 579(3):757-62. PubMed ID: 15670842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone acetylation-independent transcription stimulation by a histone chaperone.
    Kato K; Miyaji-Yamaguchi M; Okuwaki M; Nagata K
    Nucleic Acids Res; 2007; 35(3):705-15. PubMed ID: 17179179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I.
    Kadota S; Nagata K
    Nucleic Acids Res; 2014 Jul; 42(12):7642-53. PubMed ID: 24878923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity.
    Miyaji-Yamaguchi M; Okuwaki M; Nagata K
    J Mol Biol; 1999 Jul; 290(2):547-57. PubMed ID: 10390352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PP2A is activated by cytochrome
    Casado-Combreras MÁ; Rivero-Rodríguez F; Elena-Real CA; Molodenskiy D; Díaz-Quintana A; Martinho M; Gerbaud G; González-Arzola K; Velázquez-Campoy A; Svergun D; Belle V; De la Rosa MA; Díaz-Moreno I
    Comput Struct Biotechnol J; 2022; 20():3695-3707. PubMed ID: 35891793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional domains of template-activating factor-I as a protein phosphatase 2A inhibitor.
    Saito S; Miyaji-Yamaguchi M; Shimoyama T; Nagata K
    Biochem Biophys Res Commun; 1999 Jun; 259(2):471-5. PubMed ID: 10362532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel estrogen receptor alpha-associated protein, template-activating factor Ibeta, inhibits acetylation and transactivation.
    Loven MA; Muster N; Yates JR; Nardulli AM
    Mol Endocrinol; 2003 Jan; 17(1):67-78. PubMed ID: 12511607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression.
    Kutney SN; Hong R; Macfarlan T; Chakravarti D
    J Biol Chem; 2004 Jul; 279(29):30850-5. PubMed ID: 15136563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ.
    Kim JY; Kim KB; Son HJ; Chae YC; Oh ST; Kim DW; Pak JH; Seo SB
    FEBS Lett; 2012 Sep; 586(19):3159-65. PubMed ID: 22796192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human TAF-Iα promotes oncogenic transformation via enhancement of cell proliferation and suppression of apoptosis.
    Nenasheva VV; Makarova IV; Stepanenko EA; Antonov SA; Novosadova EV; Narsullaeva AR; Kozikova LV; Polteva EA; Sleptsova LA; Shcherbatova NA; Khaidarova NV; Andreeva LE; Tarantul VZ
    In Vitro Cell Dev Biol Anim; 2021 May; 57(5):531-538. PubMed ID: 34021475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.