These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28251926)

  • 1. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility.
    Stern JL; Lessard DV; Hoeprich GJ; Morfini GA; Berger CL
    Mol Biol Cell; 2017 Apr; 28(8):1079-1087. PubMed ID: 28251926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization.
    Gauthier-Kemper A; Suárez Alonso M; Sündermann F; Niewidok B; Fernandez MP; Bakota L; Heinisch JJ; Brandt R
    J Biol Chem; 2018 May; 293(21):8065-8076. PubMed ID: 29636414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effect of phosphorylation and substrate modulation on tau's ability to promote microtubule growth and nucleation.
    Brandt R; Lee G; Teplow DB; Shalloway D; Abdel-Ghany M
    J Biol Chem; 1994 Apr; 269(16):11776-82. PubMed ID: 8163474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
    Chaudhary AR; Berger F; Berger CL; Hendricks AG
    Traffic; 2018 Feb; 19(2):111-121. PubMed ID: 29077261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule- and lipid-binding properties of Tau.
    Ait-Bouziad N; Chiki A; Limorenko G; Xiao S; Eliezer D; Lashuel HA
    J Biol Chem; 2020 Jun; 295(23):7905-7922. PubMed ID: 32341125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of dynein and kinesin motor proteins by tau.
    Dixit R; Ross JL; Goldman YE; Holzbaur EL
    Science; 2008 Feb; 319(5866):1086-9. PubMed ID: 18202255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule imaging of Tau dynamics on the microtubule surface.
    Stern JL; Lessard DV; Ali R; Berger CL
    Methods Cell Biol; 2017; 141():135-154. PubMed ID: 28882299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching.
    Hoeprich GJ; Mickolajczyk KJ; Nelson SR; Hancock WO; Berger CL
    Traffic; 2017 May; 18(5):304-314. PubMed ID: 28267259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning microtubule-based transport through filamentous MAPs: the problem of dynein.
    Vershinin M; Xu J; Razafsky DS; King SJ; Gross SP
    Traffic; 2008 Jun; 9(6):882-92. PubMed ID: 18373727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules.
    Cho JH; Johnson GV
    J Neurochem; 2004 Jan; 88(2):349-58. PubMed ID: 14690523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin.
    Cuchillo-Ibanez I; Seereeram A; Byers HL; Leung KY; Ward MA; Anderton BH; Hanger DP
    FASEB J; 2008 Sep; 22(9):3186-95. PubMed ID: 18511549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein.
    Eidenmüller J; Fath T; Maas T; Pool M; Sontag E; Brandt R
    Biochem J; 2001 Aug; 357(Pt 3):759-67. PubMed ID: 11463346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments.
    Maas T; Eidenmüller J; Brandt R
    J Biol Chem; 2000 May; 275(21):15733-40. PubMed ID: 10747907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport.
    McVicker DP; Chrin LR; Berger CL
    J Biol Chem; 2011 Dec; 286(50):42873-80. PubMed ID: 22039058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility.
    Balabanian L; Berger CL; Hendricks AG
    Biophys J; 2017 Oct; 113(7):1551-1560. PubMed ID: 28978447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.
    Prezel E; Elie A; Delaroche J; Stoppin-Mellet V; Bosc C; Serre L; Fourest-Lieuvin A; Andrieux A; Vantard M; Arnal I
    Mol Biol Cell; 2018 Jan; 29(2):154-165. PubMed ID: 29167379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic model for kinesin-mediated long-range transport and its local traffic jam caused by tau proteins.
    Nam W; Epureanu BI
    Phys Rev E; 2017 Jan; 95(1-1):012405. PubMed ID: 28208320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of tau phosphorylation within its microtubule-binding domain by cellular thiols.
    Jenkins SM; Johnson GV
    J Neurochem; 1999 Nov; 73(5):1843-50. PubMed ID: 10537042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tau binding to microtubules does not directly affect microtubule-based vesicle motility.
    Morfini G; Pigino G; Mizuno N; Kikkawa M; Brady ST
    J Neurosci Res; 2007 Sep; 85(12):2620-30. PubMed ID: 17265463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tau proteins bind to kinesin and modulate its activation by microtubules.
    Jancsik V; Filliol D; Rendon A
    Neurobiology (Bp); 1996; 4(4):417-29. PubMed ID: 9200133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.