These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
620 related articles for article (PubMed ID: 28251960)
1. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity. Sabetian P; Popovic MR; Yoo PB J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of differentially measuring afferent and efferent neural activity with a single nerve cuff electrode. Sabetian P; Yoo PB J Neural Eng; 2020 Jan; 17(1):016040. PubMed ID: 31698350 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the reduction of stimulation artifact noise in a tripolar nerve cuff electrode by application of a conductive shield layer. Sabetian P; Sadeghlo B; Zhang CH; Yoo PB Med Eng Phys; 2017 Feb; 40():39-46. PubMed ID: 27956020 [TBL] [Abstract][Full Text] [Related]
4. Directionally-sensitive peripheral nerve recording: bipolar nerve cuff design. Sabetian P; Popovic MR; Yoo PB Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6178-6181. PubMed ID: 28269663 [TBL] [Abstract][Full Text] [Related]
5. Signal strength versus cuff length in nerve cuff electrode recordings. Andreasen LN; Struijk JJ IEEE Trans Biomed Eng; 2002 Sep; 49(9):1045-50. PubMed ID: 12214877 [TBL] [Abstract][Full Text] [Related]
6. Model-based evaluation of the short-circuited tripolar cuff configuration. Andreasen LN; Struijk JJ Med Biol Eng Comput; 2006 May; 44(5):404-13. PubMed ID: 16937182 [TBL] [Abstract][Full Text] [Related]
7. A low-noise preamplifier for nerve cuff electrodes. Sahin M IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):561-5. PubMed ID: 16425839 [TBL] [Abstract][Full Text] [Related]
8. Improved nerve cuff electrode recordings with subthreshold anodic currents. Sahin M; Durand DM IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579 [TBL] [Abstract][Full Text] [Related]
9. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode. Yoshida K; Kurstjens GA; Hennings K Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269 [TBL] [Abstract][Full Text] [Related]
10. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation. Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830 [TBL] [Abstract][Full Text] [Related]
11. Effect of contacts configuration and location on selective stimulation of cuff electrode. Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y Biomed Mater Eng; 2015; 25(3):237-48. PubMed ID: 26407110 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface. Nielsen TN; Sevcencu C; Struijk JJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):88-95. PubMed ID: 23981544 [TBL] [Abstract][Full Text] [Related]
13. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. Vasudevan S; Patel K; Welle C J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777 [TBL] [Abstract][Full Text] [Related]
14. Effect of bipolar cuff electrode design on block thresholds in high-frequency electrical neural conduction block. Ackermann DM; Foldes EL; Bhadra N; Kilgore KL IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):469-77. PubMed ID: 19840914 [TBL] [Abstract][Full Text] [Related]