BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28252138)

  • 1. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain.
    Cheng Y; Wang R; Zhai H; Sun J
    Nanoscale; 2017 Mar; 9(11):3834-3842. PubMed ID: 28252138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires.
    Yao S; Zhu Y
    Nanoscale; 2014 Feb; 6(4):2345-52. PubMed ID: 24424201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes.
    Zhao P; Zhang R; Tong Y; Zhao X; Zhang T; Tang Q; Liu Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55083-55093. PubMed ID: 33232130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Capacitive Tactile Sensor Based on Porous Dielectric Composite of Polyurethane and Silver Nanowire.
    Hsieh GW; Chien CY
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing.
    Chou HH; Nguyen A; Chortos A; To JW; Lu C; Mei J; Kurosawa T; Bae WG; Tok JB; Bao Z
    Nat Commun; 2015 Aug; 6():8011. PubMed ID: 26300307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Highly Stretchable Nanofiber-Based Electronic Skin with Pressure-, Strain-, and Flexion-Sensitive Properties for Health and Motion Monitoring.
    Qi K; He J; Wang H; Zhou Y; You X; Nan N; Shao W; Wang L; Ding B; Cui S
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42951-42960. PubMed ID: 28891284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Patterned Ag Nanowire Networks.
    Kim SR; Kim JH; Park JW
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26407-26416. PubMed ID: 28730804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material approaches to stretchable strain sensors.
    Park J; You I; Shin S; Jeong U
    Chemphyschem; 2015 Apr; 16(6):1155-63. PubMed ID: 25641620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Elastomeric Fingerprint-Shaped Electronic Skin Based on Tunable Patterned Graphene/Silver Nanocomposites.
    Zhu L; Wang Y; Mei D; Ding W; Jiang C; Lu Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31725-31737. PubMed ID: 32569461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Electronic Skin Based on a Stretchable Ionogel Mechanoreceptor Composed of Crumpled Conductive Rubber Electrodes for Synchronous Strain, Pressure, and Temperature Detection.
    Bi X; Yao M; Huang Z; Wang Z; Shen H; Wong CP; Jiang C
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38592053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Sensitive and Stretchable Resistive Strain Sensors Based on Microstructured Metal Nanowire/Elastomer Composite Films.
    Kim KH; Jang NS; Ha SH; Cho JH; Kim JM
    Small; 2018 Apr; 14(14):e1704232. PubMed ID: 29473293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare.
    Guo J; Zhou B; Zong R; Pan L; Li X; Yu X; Yang C; Kong L; Dai Q
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33589-33598. PubMed ID: 31464425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network.
    Jason NN; Wang SJ; Bhanushali S; Cheng W
    Nanoscale; 2016 Sep; 8(37):16596-16605. PubMed ID: 27714094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures.
    Park J; Lee Y; Hong J; Lee Y; Ha M; Jung Y; Lim H; Kim SY; Ko H
    ACS Nano; 2014 Dec; 8(12):12020-9. PubMed ID: 25389631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructured Polyfluoroacrylate Elastomeric Dielectric Layer for Highly Stretchable Wide-Range Capacitive Pressure Sensors.
    Chen Y; Huang Z; Hu F; Peng J; Huang T; Liu X; Luo C; Xu L; Yue K
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58700-58710. PubMed ID: 38065675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires.
    Wang J; Jiu J; Nogi M; Sugahara T; Nagao S; Koga H; He P; Suganuma K
    Nanoscale; 2015 Feb; 7(7):2926-32. PubMed ID: 25588044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics.
    Yang JC; Mun J; Kwon SY; Park S; Bao Z; Park S
    Adv Mater; 2019 Nov; 31(48):e1904765. PubMed ID: 31538370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Solution-Processable, Omnidirectionally Stretchable, and High-Pressure-Sensitive Piezoresistive Device.
    Roh E; Lee HB; Kim DI; Lee NE
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28960525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.
    Amjadi M; Turan M; Clementson CP; Sitti M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5618-26. PubMed ID: 26842553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crack-Enhanced Microfluidic Stretchable E-Skin Sensor.
    Ho DH; Song R; Sun Q; Park WH; Kim SY; Pang C; Kim DH; Kim SY; Lee J; Cho JH
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44678-44686. PubMed ID: 29205030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.