These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28252276)

  • 1. Spatiotemporal Control of Supramolecular Self-Assembly and Function.
    Zhan J; Cai Y; Ji S; He S; Cao Y; Ding D; Wang L; Yang Z
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10012-10018. PubMed ID: 28252276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides.
    Gao J; Zhan J; Yang Z
    Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic Self-Assembly on Magnetic Nanoparticles.
    Conte MP; Sahoo JK; Abul-Haija YM; Lau KHA; Ulijn RV
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3069-3075. PubMed ID: 29282971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity-based screening of peptides recognizing assembly states of self-assembling peptide nanomaterials.
    Sawada T; Takahashi T; Mihara H
    J Am Chem Soc; 2009 Oct; 131(40):14434-41. PubMed ID: 19764764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Triggered Self-Assembly of Peptide Nanoparticles into Nanofibers in Living Cells through Molecular Conformation Changes and H-Bond Interactions.
    Sun S; Liang HW; Wang H; Zou Q
    ACS Nano; 2022 Nov; 16(11):18978-18989. PubMed ID: 36354757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Self-Assemblies with Nanoscale RGD Clusters Promote Cell Growth and Intracellular Drug Delivery.
    Xu F; Liu J; Tian J; Gao L; Cheng X; Pan Y; Sun Z; Li X
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):29906-29914. PubMed ID: 27759366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
    An B; Wang X; Cui M; Gui X; Mao X; Liu Y; Li K; Chu C; Pu J; Ren S; Wang Y; Zhong G; Lu TK; Liu C; Zhong C
    ACS Nano; 2017 Jul; 11(7):6985-6995. PubMed ID: 28609612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem Molecular Self-Assembly in Liver Cancer Cells.
    Zhan J; Cai Y; He S; Wang L; Yang Z
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1813-1816. PubMed ID: 29276818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Tumor Environment Triggered Self-Assembling Peptide Nanofibers and Inducible Multivalent Ligand Display for Cancer Cell Targeting with Enhanced Sensitivity and Specificity.
    Chen W; Li S; Lang JC; Chang Y; Pan Z; Kroll P; Sun X; Tang L; Dong H
    Small; 2020 Sep; 16(38):e2002780. PubMed ID: 32812362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrowing the diversification of supramolecular assemblies by preorganization.
    Wang Z; Liang C; Shang Y; He S; Wang L; Yang Z
    Chem Commun (Camb); 2018 Mar; 54(22):2751-2754. PubMed ID: 29479604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-Instructed Self-Assembly Enabled Monomer-Excimer Transition to Construct Higher Ordered Luminescent Supramolecular Assembly for Activity-based Bioimaging.
    Zhong Y; Zhan J; Xu G; Chen Y; Qin Q; Liao X; Ma S; Yang Z; Cai Y
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8121-8129. PubMed ID: 33410570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using phosphatases to generate self-assembled nanostructures and their applications.
    Zhang J; Gao J; Chen M; Yang Z
    Antioxid Redox Signal; 2014 May; 20(14):2179-90. PubMed ID: 24180369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.
    Garifullin R; Guler MO
    Chem Commun (Camb); 2015 Aug; 51(62):12470-3. PubMed ID: 26146021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Peptide-based bioactivated
    Li R; Ren H; Liu X; Chen Z; Li L; Wang H
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):650-665. PubMed ID: 35234388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of self-assembling nanofibers with optimal cell uptake and therapeutic delivery efficacy.
    Xu D; Samways DSK; Dong H
    Bioact Mater; 2017 Dec; 2(4):260-268. PubMed ID: 29744435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environment-sensitive fluorescent supramolecular nanofibers for imaging applications.
    Cai Y; Shi Y; Wang H; Wang J; Ding D; Wang L; Yang Z
    Anal Chem; 2014 Feb; 86(4):2193-9. PubMed ID: 24467604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly.
    Liang C; Yan X; Zhang R; Xu T; Zheng D; Tan Z; Chen Y; Gao Z; Wang L; Li X; Yang Z
    J Control Release; 2020 Jan; 317():109-117. PubMed ID: 31778740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.