These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 28252280)
1. Interfacial Shish-Kebabs Lengthened by Coupling Effect of In Situ Flexible Nanofibrils and Intense Shear Flow: Achieving Hierarchy To Conquer the Conflicts between Strength and Toughness of Polylactide. Zhou SY; Niu B; Xie XL; Ji X; Zhong GJ; Hsiao BS; Li ZM ACS Appl Mater Interfaces; 2017 Mar; 9(11):10148-10159. PubMed ID: 28252280 [TBL] [Abstract][Full Text] [Related]
2. Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate-co-terephthalate). Zhou SY; Huang HD; Ji X; Yan DX; Zhong GJ; Hsiao BS; Li ZM ACS Appl Mater Interfaces; 2016 Mar; 8(12):8096-109. PubMed ID: 26959220 [TBL] [Abstract][Full Text] [Related]
4. The coupling effect of cellulose nanocrystal and strong shear field achieved the strength and toughness balance of Polylactide. Wu JJ; Gao N; Jiang L; Zhong GJ; Deng C; Gao X Int J Biol Macromol; 2022 May; 207():927-940. PubMed ID: 35364194 [TBL] [Abstract][Full Text] [Related]
5. Formation of shish-kebabs in injection-molded poly(L-lactic acid) by application of an intense flow field. Xu H; Zhong GJ; Fu Q; Lei J; Jiang W; Hsiao BS; Li ZM ACS Appl Mater Interfaces; 2012 Dec; 4(12):6774-84. PubMed ID: 23153180 [TBL] [Abstract][Full Text] [Related]
6. Unprecedented access to strong and ductile poly(lactic acid) by introducing In Situ Nanofibrillar Poly(butylene succinate) for green packaging. Xie L; Xu H; Niu B; Ji X; Chen J; Li ZM; Hsiao BS; Zhong GJ Biomacromolecules; 2014 Nov; 15(11):4054-64. PubMed ID: 25245861 [TBL] [Abstract][Full Text] [Related]
8. Improving the compatibility and toughness of sustainable polylactide/poly(butylene adipate-co-terephthalate) blends by incorporation of peroxide and diacrylate. Liu Y; Dou Q Int J Biol Macromol; 2024 Feb; 259(Pt 2):129355. PubMed ID: 38218295 [TBL] [Abstract][Full Text] [Related]
9. In-situ self-reinforcement of amorphous polylactide (PLA) through induced crystallites network and its highly ductile and toughened PLA/poly(butylene adipate-co-terephthalate) (PBAT) blends. Eraslan K; Altınbay A; Nofar M Int J Biol Macromol; 2024 Jun; 272(Pt 2):132936. PubMed ID: 38848828 [TBL] [Abstract][Full Text] [Related]
10. In Situ Formation of Microfibrillar Crystalline Superstructure: Achieving High-Performance Polylactide. Li C; Jiang T; Wang J; Wu H; Guo S; Zhang X; Li J; Shen J; Chen R; Xiong Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):25818-25829. PubMed ID: 28708370 [TBL] [Abstract][Full Text] [Related]
11. Strong synergistic toughening and compatibilization enhancement of carbon nanotubes and multi-functional epoxy compatibilizer in high toughened polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends. Zhao X; Yu J; Wang X; Huang Z; Zhou W; Peng S Int J Biol Macromol; 2023 Oct; 250():126204. PubMed ID: 37573914 [TBL] [Abstract][Full Text] [Related]
12. Structural Hierarchy and Polymorphic Transformation in Shear-Induced Shish-Kebab of Stereocomplex Poly(Lactic Acid). Xie L; Xu H; Li ZM; Hakkarainen M Macromol Rapid Commun; 2016 May; 37(9):745-51. PubMed ID: 26987565 [TBL] [Abstract][Full Text] [Related]
13. Investigation on Polylactide (PLA)/Poly(butylene adipate-co-terephthalate) (PBAT)/Bark Flour of Plane Tree (PF) Eco-Composites. Dou Q; Cai J Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773515 [TBL] [Abstract][Full Text] [Related]
14. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Bai H; Huang C; Xiu H; Zhang Q; Deng H; Wang K; Chen F; Fu Q Biomacromolecules; 2014 Apr; 15(4):1507-14. PubMed ID: 24617940 [TBL] [Abstract][Full Text] [Related]
15. Poly(ε-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Wang X; Salick MR; Wang X; Cordie T; Han W; Peng Y; Li Q; Turng LS Biomacromolecules; 2013 Oct; 14(10):3557-69. PubMed ID: 24010580 [TBL] [Abstract][Full Text] [Related]
16. Effect of Different Compatibilizers on the Properties of Poly (Lactic Acid)/Poly (Butylene Adipate-Co-Terephthalate) Blends Prepared under Intense Shear Flow Field. He H; Wang G; Chen M; Xiong C; Li Y; Tong Y Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369995 [TBL] [Abstract][Full Text] [Related]
17. Toughening and thermal characteristics of plasticized polylactide and poly(butylene adipate-co-terephthalate) blend films: Influence of compatibilization. Phetwarotai W; Zawong M; Phusunti N; Aht-Ong D Int J Biol Macromol; 2021 Jul; 183():346-357. PubMed ID: 33932412 [TBL] [Abstract][Full Text] [Related]
18. Investigating the role of oriented nucleus in polymer shish-kebab crystal growth via phase-field method. Wang X; Ouyang J; Su J; Zhou W J Chem Phys; 2014 Mar; 140(11):114102. PubMed ID: 24655167 [TBL] [Abstract][Full Text] [Related]
19. Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites Sun DX; Gu T; Mao YT; Huang CH; Qi XD; Yang JH; Wang Y Biomacromolecules; 2022 Apr; 23(4):1789-1802. PubMed ID: 35344361 [TBL] [Abstract][Full Text] [Related]
20. Blends of poly(butylene adipate- Zhao H; Liu H; Liu Y; Yang Y RSC Adv; 2020 Mar; 10(18):10482-10490. PubMed ID: 35492938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]