These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 28252286)
1. Phosphine-Free Synthesis of Metal Chalcogenide Quantum Dots by Directly Dissolving Chalcogen Dioxides in Alkylthiol as the Precursor. Yao D; Xin W; Liu Z; Wang Z; Feng J; Dong C; Liu Y; Yang B; Zhang H ACS Appl Mater Interfaces; 2017 Mar; 9(11):9840-9848. PubMed ID: 28252286 [TBL] [Abstract][Full Text] [Related]
3. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots. Jiang P; Zhu DL; Zhu CN; Zhang ZL; Zhang GJ; Pang DW Nanoscale; 2015 Dec; 7(45):19310-6. PubMed ID: 26531253 [TBL] [Abstract][Full Text] [Related]
4. A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors. Yao D; Liu Y; Zhao W; Wei H; Luo X; Wu Z; Dong C; Zhang H; Yang B Nanoscale; 2013 Oct; 5(20):9593-7. PubMed ID: 24056800 [TBL] [Abstract][Full Text] [Related]
5. Surface Ligand Dynamics-Guided Preparation of Quantum Dots-Cellulose Composites for Light-Emitting Diodes. Zhou D; Zou H; Liu M; Zhang K; Sheng Y; Cui J; Zhang H; Yang B ACS Appl Mater Interfaces; 2015 Jul; 7(29):15830-9. PubMed ID: 26146754 [TBL] [Abstract][Full Text] [Related]
6. Molecular control of the nanoscale: effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology. Ruberu TP; Albright HR; Callis B; Ward B; Cisneros J; Fan HJ; Vela J ACS Nano; 2012 Jun; 6(6):5348-59. PubMed ID: 22519805 [TBL] [Abstract][Full Text] [Related]
7. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes. Zhang Y; Li G; Zhang T; Song Z; Wang H; Zhang Z; Jiang Y J Nanosci Nanotechnol; 2018 Mar; 18(3):1864-1869. PubMed ID: 29448673 [TBL] [Abstract][Full Text] [Related]
8. Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes. Yuan X; Ma R; Zhang W; Hua J; Meng X; Zhong X; Zhang J; Zhao J; Li H ACS Appl Mater Interfaces; 2015 Apr; 7(16):8659-66. PubMed ID: 25866991 [TBL] [Abstract][Full Text] [Related]
9. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Zhang W; Chen G; Wang J; Ye BC; Zhong X Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326 [TBL] [Abstract][Full Text] [Related]
10. Performance of light-emitting-diode based on quantum dots. Kim S; Im SH; Kim SW Nanoscale; 2013 Jun; 5(12):5205-14. PubMed ID: 23695105 [TBL] [Abstract][Full Text] [Related]
11. Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. Liu Y; Yao D; Shen L; Zhang H; Zhang X; Yang B J Am Chem Soc; 2012 May; 134(17):7207-10. PubMed ID: 22515639 [TBL] [Abstract][Full Text] [Related]
12. High quantum-yield CdSexS1-x/ZnS core/shell quantum dots for warm white light-emitting diodes with good color rendering. Duan H; Jiang Y; Zhang Y; Sun D; Liu C; Huang J; Lan X; Zhou H; Chen L; Zhong H Nanotechnology; 2013 Jul; 24(28):285201. PubMed ID: 23787792 [TBL] [Abstract][Full Text] [Related]
13. Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots. Liu F; Zhu J; Xu Y; Zhou L; Dai S Nanoscale; 2016 May; 8(19):10021-5. PubMed ID: 27137673 [TBL] [Abstract][Full Text] [Related]
14. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Lin Q; Yun HJ; Liu W; Song HJ; Makarov NS; Isaienko O; Nakotte T; Chen G; Luo H; Klimov VI; Pietryga JM J Am Chem Soc; 2017 May; 139(19):6644-6653. PubMed ID: 28431206 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor. Shen H; Zheng Y; Wang H; Xu W; Qian L; Yang Y; Titov A; Hyvonen J; Li LS Nanotechnology; 2013 Nov; 24(47):475603. PubMed ID: 24192490 [TBL] [Abstract][Full Text] [Related]
16. Glycerol-regulated facile synthesis and targeted cell imaging of highly luminescent Ag2Te quantum dots with tunable near-infrared emission. Jin H; Gui R; Sun J; Wang Y Colloids Surf B Biointerfaces; 2016 Jul; 143():118-123. PubMed ID: 26998873 [TBL] [Abstract][Full Text] [Related]
17. Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot-Salt Mixed Crystals. Adam M; Erdem T; Stachowski GM; Soran-Erdem Z; Lox JF; Bauer C; Poppe J; Demir HV; Gaponik N; Eychmüller A ACS Appl Mater Interfaces; 2015 Oct; 7(41):23364-71. PubMed ID: 26437890 [TBL] [Abstract][Full Text] [Related]
18. Highly bright yellow-green-emitting CuInS₂ colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes. Park SH; Hong A; Kim JH; Yang H; Lee K; Jang HS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6764-71. PubMed ID: 25757746 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of green Zn-Ag-In-S and red Zn-Cu-In-S quantum dots for ultrahigh color quality of down-converted white LEDs. Yoon HC; Oh JH; Ko M; Yoo H; Do YR ACS Appl Mater Interfaces; 2015 Apr; 7(13):7342-50. PubMed ID: 25781889 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal synthesis of high-quality type-II CdTe/CdSe quantum dots with near-infrared fluorescence. Wang J; Han H J Colloid Interface Sci; 2010 Nov; 351(1):83-7. PubMed ID: 20692669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]