These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28252411)

  • 1. Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.
    Gawthrop PJ
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):177-188. PubMed ID: 28252411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular bond-graph modelling and analysis of biomolecular systems.
    Gawthrop PJ; Crampin EJ
    IET Syst Biol; 2016 Oct; 10(5):187-201. PubMed ID: 27762233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network representation and analysis of energy coupling mechanisms in cellular metabolism by a graph-theoretical approach.
    Nath S
    Theory Biosci; 2022 Sep; 141(3):249-260. PubMed ID: 35499671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bond Graph Representation of Chemical Reaction Networks.
    Gawthrop P; Crampin EJ
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):449-455. PubMed ID: 30334803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.
    Chang I; Heiske M; Letellier T; Wallace D; Baldi P
    PLoS One; 2011; 6(9):e14820. PubMed ID: 21931590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing Biomolecular System Steady-States.
    Gawthrop P
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):36-43. PubMed ID: 29570073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physically-plausible modelling of biomolecular systems: A simplified, energy-based model of the mitochondrial electron transport chain.
    Gawthrop PJ; Cudmore P; Crampin EJ
    J Theor Biol; 2020 May; 493():110223. PubMed ID: 32119969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis--invited review part 2.
    Nath S
    J Bioenerg Biomembr; 2010 Aug; 42(4):301-9. PubMed ID: 20490638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network thermodynamics of biological systems: A bond graph approach.
    Gawthrop PJ; Pan M
    Math Biosci; 2022 Oct; 352():108899. PubMed ID: 36057321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models.
    Braun-Sand S; Strajbl M; Warshel A
    Biophys J; 2004 Oct; 87(4):2221-39. PubMed ID: 15454425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial energetic metabolism-some general principles.
    Mazat JP; Ransac S; Heiske M; Devin A; Rigoulet M
    IUBMB Life; 2013 Mar; 65(3):171-9. PubMed ID: 23441039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular dynamic biomolecular modelling with bond graphs: the unification of stoichiometry, thermodynamics, kinetics and data.
    Gawthrop PJ; Pan M; Crampin EJ
    J R Soc Interface; 2021 Aug; 18(181):20210478. PubMed ID: 34428949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-based analysis of biomolecular pathways.
    Gawthrop PJ; Crampin EJ
    Proc Math Phys Eng Sci; 2017 Jun; 473(2202):20160825. PubMed ID: 28690404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-based analysis of biochemical cycles using bond graphs.
    Gawthrop PJ; Crampin EJ
    Proc Math Phys Eng Sci; 2014 Nov; 470(2171):20140459. PubMed ID: 25383030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation.
    Ernster L
    Annu Rev Biochem; 1977; 46():981-95. PubMed ID: 20042
    [No Abstract]   [Full Text] [Related]  

  • 17. Impact of thermodynamic principles in systems biology.
    Heijnen JJ
    Adv Biochem Eng Biotechnol; 2010; 121():139-62. PubMed ID: 20490971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The murburn precepts for aerobic respiration and redox homeostasis.
    Manoj KM; Bazhin NM
    Prog Biophys Mol Biol; 2021 Dec; 167():104-120. PubMed ID: 34118265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of electrical fields on the kinetics of biological processes].
    Timashev SF
    Biofizika; 1981; 26(4):642-6. PubMed ID: 7284452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.