These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28252443)

  • 1. On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
    Córcoles J; Zastrow E; Kuster N
    Phys Med Biol; 2017 Jun; 62(12):4711-4727. PubMed ID: 28252443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.
    Fiedler TM; Ladd ME; Bitz AK
    Med Phys; 2017 Jan; 44(1):143-157. PubMed ID: 28102957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of feasibility of 1.5 Tesla prostate MRI using body coil RF transmit in a patient with an implanted vagus nerve stimulator.
    Favazza CP; Edmonson HA; Ma C; Shu Y; Felmlee JP; Watson RE; Gorny KR
    Med Phys; 2017 Nov; 44(11):5749-5754. PubMed ID: 28880381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive SAR mass-averaging framework to improve predictions of local RF heating near a hip implant for parallel transmit at 7 T.
    Destruel A; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jan; 81(1):615-627. PubMed ID: 30058186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T.
    Destruel A; Fuentes M; Weber E; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jun; 81(6):3826-3839. PubMed ID: 30803001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RF tissue-heating near metallic implants during magnetic resonance examinations: an approach in the ac limit.
    Ballweg V; Eibofner F; Graf H
    Med Phys; 2011 Oct; 38(10):5522-9. PubMed ID: 21992370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the potential for RF heating in MRI to affect metabolic rates and
    Carluccio G; Ding YS; Logan J; Collins CM
    Med Phys; 2017 Feb; 44(2):589-596. PubMed ID: 28133747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAR Simulations & Safety.
    Fiedler TM; Ladd ME; Bitz AK
    Neuroimage; 2018 Mar; 168():33-58. PubMed ID: 28336426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of RF heating due to various implants during MR procedures.
    Muranaka H; Horiguchi T; Ueda Y; Tanki N
    Magn Reson Med Sci; 2011; 10(1):11-9. PubMed ID: 21441723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of coil dimensions and field polarization on RF heating inside a head phantom.
    Kangarlu A; Ibrahim TS; Shellock FG
    Magn Reson Imaging; 2005 Jan; 23(1):53-60. PubMed ID: 15733788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrospective analysis of RF heating measurements of passive medical implants.
    Song T; Xu Z; Iacono MI; Angelone LM; Rajan S
    Magn Reson Med; 2018 Dec; 80(6):2726-2730. PubMed ID: 29744918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.
    Córcoles J; Zastrow E; Kuster N
    Phys Med Biol; 2015 Sep; 60(18):7293-308. PubMed ID: 26350025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of implant RF heating through modification of transmit coil electric field.
    Eryaman Y; Akin B; Atalar E
    Magn Reson Med; 2011 May; 65(5):1305-13. PubMed ID: 21500259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the RF heating of coronary stents at 7.0 Tesla MRI.
    Winter L; Oberacker E; Özerdem C; Ji Y; von Knobelsdorff-Brenkenhoff F; Weidemann G; Ittermann B; Seifert F; Niendorf T
    Magn Reson Med; 2015 Oct; 74(4):999-1010. PubMed ID: 25293952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational and experimental investigation of RF-induced heating for multiple orthopedic implants.
    Guo R; Zheng J; Wang Y; Zeng Q; Wang Q; Yang R; Kainz W; Chen J
    Magn Reson Med; 2019 Nov; 82(5):1848-1858. PubMed ID: 31183897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.