BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28252971)

  • 1. In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes.
    Lee W; Kihm KD; Kim HG; Shin S; Lee C; Park JS; Cheon S; Kwon OM; Lim G; Lee W
    Nano Lett; 2017 Apr; 17(4):2361-2366. PubMed ID: 28252971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments.
    Chen S; Moore AL; Cai W; Suk JW; An J; Mishra C; Amos C; Magnuson CW; Kang J; Shi L; Ruoff RS
    ACS Nano; 2011 Jan; 5(1):321-8. PubMed ID: 21162551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.
    Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal Grain-Size Scaling of Thermal Transport in Polycrystalline Graphene from Large-Scale Molecular Dynamics Simulations.
    Fan Z; Hirvonen P; Pereira LFC; Ervasti MM; Elder KR; Donadio D; Harju A; Ala-Nissila T
    Nano Lett; 2017 Oct; 17(10):5919-5924. PubMed ID: 28877440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate.
    Liu J; Wang T; Xu S; Yuan P; Xu X; Wang X
    Nanoscale; 2016 May; 8(19):10298-309. PubMed ID: 27129017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Thermoelectric Conversion Efficiency of CVD Graphene with Reduced Grain Sizes.
    Lim G; Kihm KD; Kim HG; Lee W; Lee W; Pyun KR; Cheon S; Lee P; Min JY; Ko SH
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30037140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition.
    Cai W; Moore AL; Zhu Y; Li X; Chen S; Shi L; Ruoff RS
    Nano Lett; 2010 May; 10(5):1645-51. PubMed ID: 20405895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness-dependent in-plane thermal conductivity of suspended MoS
    Bae JJ; Jeong HY; Han GH; Kim J; Kim H; Kim MS; Moon BH; Lim SC; Lee YH
    Nanoscale; 2017 Feb; 9(7):2541-2547. PubMed ID: 28150838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
    Barrios-Vargas JE; Mortazavi B; Cummings AW; Martinez-Gordillo R; Pruneda M; Colombo L; Rabczuk T; Roche S
    Nano Lett; 2017 Mar; 17(3):1660-1664. PubMed ID: 28195494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers.
    Raja SN; Osenberg D; Choi K; Park HG; Poulikakos D
    Nanoscale; 2017 Oct; 9(40):15515-15524. PubMed ID: 28980698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.
    Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W
    Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder.
    Vlassiouk I; Smirnov S; Ivanov I; Fulvio PF; Dai S; Meyer H; Chi M; Hensley D; Datskos P; Lavrik NV
    Nanotechnology; 2011 Jul; 22(27):275716. PubMed ID: 21613685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling.
    Khalkhali M; Rajabpour A; Khoeini F
    Sci Rep; 2019 Apr; 9(1):5684. PubMed ID: 30952974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping.
    Chen S; Li Q; Zhang Q; Qu Y; Ji H; Ruoff RS; Cai W
    Nanotechnology; 2012 Sep; 23(36):365701. PubMed ID: 22910228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature Dependence of Thermal Conductivity of Giant-Scale Supported Monolayer Graphene.
    Liu J; Li P; Xu S; Xie Y; Wang Q; Ma L
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.
    Choi DS; Kim KS; Kim H; Kim Y; Kim T; Rhy SH; Yang CM; Yoon DH; Yang WS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19574-8. PubMed ID: 25386721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure.
    Fan X; Wagner S; Schädlich P; Speck F; Kataria S; Haraldsson T; Seyller T; Lemme MC; Niklaus F
    Sci Adv; 2018 May; 4(5):eaar5170. PubMed ID: 29806026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.
    Mortazavi B; Pötschke M; Cuniberti G
    Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit.
    Xie Y; Xu Z; Xu S; Cheng Z; Hashemi N; Deng C; Wang X
    Nanoscale; 2015 Jun; 7(22):10101-10. PubMed ID: 25981826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Extraction of the Grain Size, Single-Crystalline Grain Sheet Resistance, and Grain Boundary Resistivity of Polycrystalline Monolayer Graphene.
    Park H; Lee J; Lee CJ; Kang J; Yun J; Noh H; Park M; Lee J; Park Y; Park J; Choi M; Lee S; Park H
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.