BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

867 related articles for article (PubMed ID: 28253237)

  • 1. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.
    Shirokikh NE; Archer SK; Beilharz TH; Powell D; Preiss T
    Nat Protoc; 2017 Apr; 12(4):697-731. PubMed ID: 28253237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of ribosome scanning and recycling revealed by translation complex profiling.
    Archer SK; Shirokikh NE; Beilharz TH; Preiss T
    Nature; 2016 Jul; 535(7613):570-4. PubMed ID: 27437580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.
    Andreev DE; O'Connor PB; Loughran G; Dmitriev SE; Baranov PV; Shatsky IN
    Nucleic Acids Res; 2017 Jan; 45(2):513-526. PubMed ID: 27923997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments.
    Ingolia NT; Brar GA; Rouskin S; McGeachy AM; Weissman JS
    Nat Protoc; 2012 Jul; 7(8):1534-50. PubMed ID: 22836135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Ribosome Profiling for Determining Ribosome Functional States During Translation Elongation.
    Shafieinouri M; Membreno BS; Wu CC
    Methods Mol Biol; 2022; 2428():173-186. PubMed ID: 35171480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring efficiency of translation initiation and elongation from ribosome profiling.
    Szavits-Nossan J; Ciandrini L
    Nucleic Acids Res; 2020 Sep; 48(17):9478-9490. PubMed ID: 32821926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments.
    Lareau LF; Hite DH; Hogan GJ; Brown PO
    Elife; 2014 May; 3():e01257. PubMed ID: 24842990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
    Ingolia NT; Ghaemmaghami S; Newman JR; Weissman JS
    Science; 2009 Apr; 324(5924):218-23. PubMed ID: 19213877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress.
    Wu CC; Zinshteyn B; Wehner KA; Green R
    Mol Cell; 2019 Mar; 73(5):959-970.e5. PubMed ID: 30686592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streamlined and sensitive mono- and di-ribosome profiling in yeast and human cells.
    Ferguson L; Upton HE; Pimentel SC; Mok A; Lareau LF; Collins K; Ingolia NT
    Nat Methods; 2023 Nov; 20(11):1704-1715. PubMed ID: 37783882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions.
    Shirokikh NE; Preiss T
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1473. PubMed ID: 29624880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes.
    Wagner S; Herrmannová A; Hronová V; Gunišová S; Sen ND; Hannan RD; Hinnebusch AG; Shirokikh NE; Preiss T; Valášek LS
    Mol Cell; 2020 Aug; 79(4):546-560.e7. PubMed ID: 32589964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control.
    Wagner S; Bohlen J; Herrmannova A; Jelínek J; Preiss T; Valášek LS; Teleman AA
    Nat Protoc; 2022 Oct; 17(10):2139-2187. PubMed ID: 35869369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein interactions required during translation.
    Gallie DR
    Plant Mol Biol; 2002 Dec; 50(6):949-70. PubMed ID: 12516864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread Co-translational RNA Decay Reveals Ribosome Dynamics.
    Pelechano V; Wei W; Steinmetz LM
    Cell; 2015 Jun; 161(6):1400-12. PubMed ID: 26046441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eIF5A Functions Globally in Translation Elongation and Termination.
    Schuller AP; Wu CC; Dever TE; Buskirk AR; Green R
    Mol Cell; 2017 Apr; 66(2):194-205.e5. PubMed ID: 28392174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-length ribosome density prediction by a multi-input and multi-output model.
    Tian T; Li S; Lang P; Zhao D; Zeng J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008842. PubMed ID: 33770074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of mRNA Translation.
    Poker G; Margaliot M; Tuller T
    Sci Rep; 2015 Aug; 5():12795. PubMed ID: 26238363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the ribosomal small subunit dynamic in Saccharomyces cerevisiae based on TCP-seq data.
    Neumann T; Tuller T
    Nucleic Acids Res; 2022 Feb; 50(3):1297-1316. PubMed ID: 35100399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.