BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28253309)

  • 1. The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana.
    Chowański S; Lubawy J; Paluch-Lubawa E; Spochacz M; Rosiński G; Słocińska M
    PLoS One; 2017; 12(3):e0173100. PubMed ID: 28253309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana.
    Chowanski S; Lubawy J; Spochacz M; Ewelina P; Grzegorz S; Rosinski G; Slocinska M
    Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():57-63. PubMed ID: 25624163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes.
    Lubawy J; Chowański SP; Colinet H; Słocińska M
    J Exp Biol; 2023 Sep; 226(17):. PubMed ID: 37589559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana.
    Slocinska M; Antos-Krzeminska N; Rosinski G; Jarmuszkiewicz W
    J Bioenerg Biomembr; 2011 Dec; 43(6):717-27. PubMed ID: 21997226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect.
    Slocinska M; Lubawy J; Jarmuszkiewicz W; Rosinski G
    J Insect Physiol; 2013 Nov; 59(11):1125-32. PubMed ID: 23973818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stress causes DNA damage and mortality in a tropical insect.
    Lubawy J; Daburon V; Chowański S; Słocińska M; Colinet H
    J Exp Biol; 2019 Nov; 222(Pt 23):. PubMed ID: 31672731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Gromphadorhina coquereliana hemolymph under cold stress.
    Lubawy J; Słocińska M
    Sci Rep; 2020 Jul; 10(1):12076. PubMed ID: 32694601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and the Ventilatory Response to Hypoxia in Gromphadorhina portentosa (Blattodea: Blaberidae).
    Harrison JF; Manoucheh M; Klok CJ; Campbell JB
    Environ Entomol; 2016 Apr; 45(2):479-83. PubMed ID: 26721296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold acclimation allows Drosophila flies to maintain mitochondrial functioning under cold stress.
    Colinet H; Renault D; Roussel D
    Insect Biochem Mol Biol; 2017 Jan; 80():52-60. PubMed ID: 27903433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion.
    Sawczyn T; Dolezych B; Klosok M; Augustyniak M; Stygar D; Buldak RJ; Kukla M; Michalczyk K; Karcz-Socha I; Zwirska-Korczala K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1644-51. PubMed ID: 22702824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature.
    Streicher JW; Cox CL; Birchard GF
    J Exp Biol; 2012 Apr; 215(Pt 7):1137-43. PubMed ID: 22399658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated ventilation and spiracle activity produce unidirectional airflow in the hissing cockroach, Gromphadorhina portentosa.
    Heinrich EC; McHenry MJ; Bradley TJ
    J Exp Biol; 2013 Dec; 216(Pt 23):4473-82. PubMed ID: 24031063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: Metabolic regulation and thermal compensation.
    Zhu W; Zhang H; Li X; Meng Q; Shu R; Wang M; Zhou G; Wang H; Miao L; Zhang J; Qin Q
    J Insect Physiol; 2016 Feb; 85():76-85. PubMed ID: 26585102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).
    Štětina T; Koštál V; Korbelová J
    PLoS One; 2015; 10(6):e0128976. PubMed ID: 26034990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly.
    Yi SX; Lee RE
    J Comp Physiol B; 2004 Nov; 174(8):611-5. PubMed ID: 15503055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular identification and functional characterisation of uncoupling protein 4 in larva and pupa fat body mitochondria from the beetle Zophobas atratus.
    Slocinska M; Antos-Krzeminska N; Rosinski G; Jarmuszkiewicz W
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Aug; 162(4):126-33. PubMed ID: 22516715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-induced release of octopamine in the American cockroach Periplaneta americana L.
    Möbius P; Penzlin H
    Acta Biol Hung; 1993; 44(1):45-50. PubMed ID: 8493851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of thermal stress during rest and exercise in the paediatric population.
    Falk B
    Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle.
    Duchamp C; Barré H; Rouanet JL; Lanni A; Cohen-Adad F; Berne G; Brebion P
    Am J Physiol; 1991 Dec; 261(6 Pt 2):R1438-45. PubMed ID: 1661099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and regulatory responses involved in cold acclimation in Atlantic killifish, Fundulus heteroclitus.
    Healy TM; Chung DJ; Crowther KG; Schulte PM
    J Comp Physiol B; 2017 Apr; 187(3):463-475. PubMed ID: 27787665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.