These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28253309)
1. The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana. Chowański S; Lubawy J; Paluch-Lubawa E; Spochacz M; Rosiński G; Słocińska M PLoS One; 2017; 12(3):e0173100. PubMed ID: 28253309 [TBL] [Abstract][Full Text] [Related]
2. Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana. Chowanski S; Lubawy J; Spochacz M; Ewelina P; Grzegorz S; Rosinski G; Slocinska M Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():57-63. PubMed ID: 25624163 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes. Lubawy J; Chowański SP; Colinet H; Słocińska M J Exp Biol; 2023 Sep; 226(17):. PubMed ID: 37589559 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana. Slocinska M; Antos-Krzeminska N; Rosinski G; Jarmuszkiewicz W J Bioenerg Biomembr; 2011 Dec; 43(6):717-27. PubMed ID: 21997226 [TBL] [Abstract][Full Text] [Related]
5. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect. Slocinska M; Lubawy J; Jarmuszkiewicz W; Rosinski G J Insect Physiol; 2013 Nov; 59(11):1125-32. PubMed ID: 23973818 [TBL] [Abstract][Full Text] [Related]
6. Thermal stress causes DNA damage and mortality in a tropical insect. Lubawy J; Daburon V; Chowański S; Słocińska M; Colinet H J Exp Biol; 2019 Nov; 222(Pt 23):. PubMed ID: 31672731 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Lubawy J; Słocińska M Sci Rep; 2020 Jul; 10(1):12076. PubMed ID: 32694601 [TBL] [Abstract][Full Text] [Related]
8. Temperature and the Ventilatory Response to Hypoxia in Gromphadorhina portentosa (Blattodea: Blaberidae). Harrison JF; Manoucheh M; Klok CJ; Campbell JB Environ Entomol; 2016 Apr; 45(2):479-83. PubMed ID: 26721296 [TBL] [Abstract][Full Text] [Related]
9. Cold acclimation allows Drosophila flies to maintain mitochondrial functioning under cold stress. Colinet H; Renault D; Roussel D Insect Biochem Mol Biol; 2017 Jan; 80():52-60. PubMed ID: 27903433 [TBL] [Abstract][Full Text] [Related]
10. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion. Sawczyn T; Dolezych B; Klosok M; Augustyniak M; Stygar D; Buldak RJ; Kukla M; Michalczyk K; Karcz-Socha I; Zwirska-Korczala K J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1644-51. PubMed ID: 22702824 [TBL] [Abstract][Full Text] [Related]
11. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature. Streicher JW; Cox CL; Birchard GF J Exp Biol; 2012 Apr; 215(Pt 7):1137-43. PubMed ID: 22399658 [TBL] [Abstract][Full Text] [Related]
12. Coordinated ventilation and spiracle activity produce unidirectional airflow in the hissing cockroach, Gromphadorhina portentosa. Heinrich EC; McHenry MJ; Bradley TJ J Exp Biol; 2013 Dec; 216(Pt 23):4473-82. PubMed ID: 24031063 [TBL] [Abstract][Full Text] [Related]
13. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: Metabolic regulation and thermal compensation. Zhu W; Zhang H; Li X; Meng Q; Shu R; Wang M; Zhou G; Wang H; Miao L; Zhang J; Qin Q J Insect Physiol; 2016 Feb; 85():76-85. PubMed ID: 26585102 [TBL] [Abstract][Full Text] [Related]
14. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster). Štětina T; Koštál V; Korbelová J PLoS One; 2015; 10(6):e0128976. PubMed ID: 26034990 [TBL] [Abstract][Full Text] [Related]
15. In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly. Yi SX; Lee RE J Comp Physiol B; 2004 Nov; 174(8):611-5. PubMed ID: 15503055 [TBL] [Abstract][Full Text] [Related]
16. Molecular identification and functional characterisation of uncoupling protein 4 in larva and pupa fat body mitochondria from the beetle Zophobas atratus. Slocinska M; Antos-Krzeminska N; Rosinski G; Jarmuszkiewicz W Comp Biochem Physiol B Biochem Mol Biol; 2012 Aug; 162(4):126-33. PubMed ID: 22516715 [TBL] [Abstract][Full Text] [Related]
17. Stress-induced release of octopamine in the American cockroach Periplaneta americana L. Möbius P; Penzlin H Acta Biol Hung; 1993; 44(1):45-50. PubMed ID: 8493851 [TBL] [Abstract][Full Text] [Related]
18. Effects of thermal stress during rest and exercise in the paediatric population. Falk B Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181 [TBL] [Abstract][Full Text] [Related]
19. Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle. Duchamp C; Barré H; Rouanet JL; Lanni A; Cohen-Adad F; Berne G; Brebion P Am J Physiol; 1991 Dec; 261(6 Pt 2):R1438-45. PubMed ID: 1661099 [TBL] [Abstract][Full Text] [Related]