These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28253365)

  • 1. Virtual electrodes around anatomical structures and their roles in defibrillation.
    Connolly A; Vigmond E; Bishop M
    PLoS One; 2017; 12(3):e0173324. PubMed ID: 28253365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels.
    Connolly AJ; Vigmond E; Bishop MJ
    Front Bioeng Biotechnol; 2017; 5():18. PubMed ID: 28396856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do intramural virtual electrodes facilitate successful defibrillation? Model-based analysis of experimental evidence.
    Hooks DA; Trew ML; Smaill BH; Pullan AJ
    J Cardiovasc Electrophysiol; 2006 Mar; 17(3):305-11. PubMed ID: 16643406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the role of the coronary vasculature in the mechanisms of defibrillation.
    Bishop MJ; Plank G; Vigmond E
    Circ Arrhythm Electrophysiol; 2012 Feb; 5(1):210-9. PubMed ID: 22157522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks.
    Connolly A; Robson MD; Schneider J; Burton R; Plank G; Bishop MJ
    Chaos; 2017 Sep; 27(9):093913. PubMed ID: 28964115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lidocaine's effect on defibrillation threshold are dependent on the defibrillation electrode system: epicardial versus endocardial.
    Winecoff Miller AP; Sims JJ; McSwain R; Ujhelyi MR
    J Cardiovasc Electrophysiol; 1998 Mar; 9(3):312-20. PubMed ID: 9554736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual electrode effects in defibrillation.
    Trayanova N; Skouibine K; Moore P
    Prog Biophys Mol Biol; 1998; 69(2-3):387-403. PubMed ID: 9785947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis.
    Boukens BJ; Gutbrod SR; Efimov IR
    Adv Exp Med Biol; 2015; 859():343-65. PubMed ID: 26238060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation.
    Efimov IR; Cheng Y; Yamanouchi Y; Tchou PJ
    J Cardiovasc Electrophysiol; 2000 Aug; 11(8):861-8. PubMed ID: 10969748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended Bidomain Modeling of Defibrillation: Quantifying Virtual Electrode Strengths in Fibrotic Myocardium.
    Bragard J; Sankarankutty AC; Sachse FB
    Front Physiol; 2019; 10():337. PubMed ID: 31001135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial potential and current distributions along transvenous defibrillation electrodes: variation of electrode characteristics.
    Pendekanti R; Henriquez CS
    Ann Biomed Eng; 1996; 24(1):156-67. PubMed ID: 8669713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-threshold field stimulation: intramural versus surface activation.
    Zemlin CW; Mironov S; Pertsov AM
    Cardiovasc Res; 2006 Jan; 69(1):98-106. PubMed ID: 16226236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential gradient field created by epicardial defibrillation electrodes in dogs.
    Chen PS; Wolf PD; Claydon FJ; Dixon EG; Vidaillet HJ; Danieley ND; Pilkington TC; Ideker RE
    Circulation; 1986 Sep; 74(3):626-36. PubMed ID: 3742760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface.
    Sharifov OF; Fast VG
    Heart Rhythm; 2006 Sep; 3(9):1063-73. PubMed ID: 16945803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of electrode design, lead configuration and impedance for successful low energy transcatheter atrial defibrillation in dogs.
    Kalman JM; Power JM; Chen JM; Farish SJ; Tonkin AM
    J Am Coll Cardiol; 1993 Oct; 22(4):1199-206. PubMed ID: 8409061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions.
    Plank G; Prassl A; Hofer E; Trayanova NA
    Biophys J; 2008 Mar; 94(5):1904-15. PubMed ID: 17993491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of titanium-mesh and porous disc electrodes for epicardial defibrillation.
    Rubin L; Rosenberg D; Parsonnet V; Villaneuva A; Ferrara-Ryan M
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1860-4. PubMed ID: 1721189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of conductivity discontinuities in design of cardiac defibrillation.
    Lim H; Cun W; Wang Y; Gray RA; Glimm J
    Chaos; 2018 Jan; 28(1):013106. PubMed ID: 29390616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation.
    Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE
    Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.