These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28253383)

  • 1. Motion characterization scheme to minimize motion artifacts in intravital microscopy.
    Lee S; Courties G; Nahrendorf M; Weissleder R; Vinegoni C
    J Biomed Opt; 2017 Mar; 22(3):36005. PubMed ID: 28253383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated motion artifact removal for intravital microscopy, without a priori information.
    Lee S; Vinegoni C; Sebas M; Weissleder R
    Sci Rep; 2014 Mar; 4():4507. PubMed ID: 24676021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions.
    Soulet D; Lamontagne-Proulx J; Aubé B; Davalos D
    J Microsc; 2020 Apr; 278(1):3-17. PubMed ID: 32072642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restored interlaced volumetric imaging increases image quality and scanning speed during intravital imaging in living mice.
    Sogabe M; Ohzeki M; Fujimoto K; Sehara-Fujisawa A; Nishimura S
    J Biophotonics; 2020 May; 13(5):e201960204. PubMed ID: 32078253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the beating heart in the mouse using intravital microscopy techniques.
    Vinegoni C; Aguirre AD; Lee S; Weissleder R
    Nat Protoc; 2015 Nov; 10(11):1802-19. PubMed ID: 26492138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible polygon-mirror based laser scanning microscope platform for multiphoton in-vivo imaging.
    Li YX; Gautam V; Brüstle A; Cockburn IA; Daria VR; Gillespie C; Gaus K; Alt C; Lee WM
    J Biophotonics; 2017 Nov; 10(11):1526-1537. PubMed ID: 28164461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical coherence tomography-based design for a real-time motion corrected scanning microscope.
    Tucker SS; Giblin JT; Kiliç K; Chen A; Tang J; Boas DA
    Opt Lett; 2023 Jul; 48(14):3805-3808. PubMed ID: 37450755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New techniques for motion-artifact-free in vivo cardiac microscopy.
    Vinegoni C; Lee S; Aguirre AD; Weissleder R
    Front Physiol; 2015; 6():147. PubMed ID: 26029116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy.
    Iyer V; Losavio BE; Saggau P
    J Biomed Opt; 2003 Jul; 8(3):460-71. PubMed ID: 12880352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMART software for correction of motion artifacts in images collected in intravital microscopy.
    Dunn KW; Lorenz KS; Salama P; Delp EJ
    Intravital; 2014; 3(1):e28210. PubMed ID: 26090271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravital imaging of gastrointestinal diseases in preclinical models using two-photon laser scanning microscopy.
    Tanaka K; Toiyama Y; Inoue Y; Uchida K; Araki T; Mohri Y; Mizoguchi A; Kusunoki M
    Surg Today; 2013 Feb; 43(2):123-9. PubMed ID: 22864975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion compensation using a suctioning stabilizer for intravital microscopy.
    Vinegoni C; Lee S; Gorbatov R; Weissleder R
    Intravital; 2012 Oct; 1(2):115-121. PubMed ID: 24086796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR-Based Cardiac and Respiratory Motion-Compensation Techniques for PET-MR Imaging.
    Munoz C; Kolbitsch C; Reader AJ; Marsden P; Schaeffter T; Prieto C
    PET Clin; 2016 Apr; 11(2):179-91. PubMed ID: 26952730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy.
    Megens RT; Reitsma S; Prinzen L; oude Egbrink MG; Engels W; Leenders PJ; Brunenberg EJ; Reesink KD; Janssen BJ; ter Haar Romeny BM; Slaaf DW; van Zandvoort MA
    J Biomed Opt; 2010; 15(1):011108. PubMed ID: 20210434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images.
    Aubreville M; Stoeve M; Oetter N; Goncalves M; Knipfer C; Neumann H; Bohr C; Stelzle F; Maier A
    Int J Comput Assist Radiol Surg; 2019 Jan; 14(1):31-42. PubMed ID: 30078151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical axial scanning in confocal microscopy using an electrically tunable lens.
    Jabbour JM; Malik BH; Olsovsky C; Cuenca R; Cheng S; Jo JA; Cheng YS; Wright JM; Maitland KC
    Biomed Opt Express; 2014 Feb; 5(2):645-52. PubMed ID: 24575357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimizing Motion Artifacts in Intravital Microscopy Using the Sedative Effect of Dexmedetomidine.
    Kim Y; Cho M; Paulson B; Kim SH; Kim JK
    Microsc Microanal; 2022 May; ():1-8. PubMed ID: 35599594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope.
    Chen Y; Wang D; Khan A; Wang Y; Borwege S; Sanai N; Liu JT
    J Biomed Opt; 2015 Oct; 20(10):106011. PubMed ID: 26509413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Stabilization of Mouse Carotid Artery for In Vivo Intravital Microscopy Imaging of Atherogenesis.
    Chèvre R
    Methods Mol Biol; 2015; 1339():349-55. PubMed ID: 26445802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.