These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28253387)

  • 1. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination.
    Spigulis J; Oshina I; Berzina A; Bykov A
    J Biomed Opt; 2017 Sep; 22(9):91508. PubMed ID: 28253387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin chromophore mapping by smartphone RGB camera under spectral band and spectral line illumination.
    Kuzmina I; Oshina I; Dambite L; Lukinsone V; Maslobojeva A; Berzina A; Spigulis J
    J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35191236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional representation of triple spectral line imaging data as an option for noncontact skin diagnostics.
    Ošina I; Spigulis J; Kuzmina I; Dambite L; Berzina A
    J Biomed Opt; 2022 Sep; 27(9):. PubMed ID: 36114603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snapshot RGB mapping of skin melanin and hemoglobin.
    Spigulis J; Oshina I
    J Biomed Opt; 2015 May; 20(5):50503. PubMed ID: 25992844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of smartphone suitability for mapping of skin chromophores.
    Kuzmina I; Lacis M; Spigulis J; Berzina A; Valeine L
    J Biomed Opt; 2015 Sep; 20(9):090503. PubMed ID: 26405818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring.
    Uthoff R; Song B; Maarouf M; Shi V; Liang R
    J Biomed Opt; 2020 Jun; 25(6):1-21. PubMed ID: 32578406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone imaging of subcutaneous veins.
    Lewis W; Franco W
    Lasers Surg Med; 2018 Dec; 50(10):1034-1039. PubMed ID: 29873404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile snapshot hyperspectral imaging device for skin evaluation using diffractive optical elements.
    Kern C; Speck U; Riesenberg R; Reble C; Khazaka G; Zieger M; Kaatz M; De Gregorio M; Fischer F
    Skin Res Technol; 2021 Jul; 27(4):589-598. PubMed ID: 33511672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.
    Schwarz M; Buehler A; Aguirre J; Ntziachristos V
    J Biophotonics; 2016 Jan; 9(1-2):55-60. PubMed ID: 26530688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral Imagery for Assessing Laser-Induced Thermal State Change in Liver.
    De Landro M; Espíritu García-Molina I; Barberio M; Felli E; Agnus V; Pizzicannella M; Diana M; Zappa E; Saccomandi P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multispectral Imaging for Skin Diseases Assessment-State of the Art and Perspectives.
    Ilișanu MA; Moldoveanu F; Moldoveanu A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles.
    Kikuchi K; Masuda Y; Hirao T
    Skin Res Technol; 2013 Nov; 19(4):499-507. PubMed ID: 23750856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral imaging enabled by an unmodified smartphone for analyzing skin morphological features and monitoring hemodynamics.
    He Q; Wang R
    Biomed Opt Express; 2020 Feb; 11(2):895-910. PubMed ID: 32133229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera.
    Lihachev A; Derjabo A; Ferulova I; Lange M; Lihacova I; Spigulis J
    J Biomed Opt; 2015; 20(12):120502. PubMed ID: 26662298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB autofluorescence imaging.
    Lihachev A; Lihacova I; Plorina EV; Lange M; Derjabo A; Spigulis J
    Biomed Opt Express; 2018 Apr; 9(4):1852-1858. PubMed ID: 29675324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging.
    Mazhar A; Dell S; Cuccia DJ; Gioux S; Durkin AJ; Frangioni JV; Tromberg BJ
    J Biomed Opt; 2010; 15(6):061716. PubMed ID: 21198164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of illumination spectrum and eye pigmentation on image quality from a fundus camera using transscleral illumination.
    Stepanov A; Thorstensen J; Tschudi J
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34240587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Band Selection in Multispectral and Narrow-Band Imaging: An Analytical Approach.
    Saiko G; Betlen A
    Adv Exp Med Biol; 2020; 1232():361-367. PubMed ID: 31893432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous detection and image capture of biological evidence using a combined 360
    Sheppard K; Fieldhouse SJ; Cassella JP
    Sci Justice; 2019 Jan; 59(1):75-82. PubMed ID: 30654971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.