BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 28253404)

  • 1. Protective Role of Orthokeratology in Reducing Risk of Rapid Axial Elongation: A Reanalysis of Data From the ROMIO and TO-SEE Studies.
    Cho P; Cheung SW
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1411-1416. PubMed ID: 28253404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discontinuation of orthokeratology on eyeball elongation (DOEE).
    Cho P; Cheung SW
    Cont Lens Anterior Eye; 2017 Apr; 40(2):82-87. PubMed ID: 28038841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial.
    Cho P; Cheung SW
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7077-85. PubMed ID: 22969068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Categorisation of myopia progression by change in refractive error and axial elongation and their impact on benefit of myopia control using orthokeratology.
    Cho P; Cheung SW; Boost MV
    PLoS One; 2020; 15(12):e0243416. PubMed ID: 33373370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of orthokeratology on axial length growth in myopic anisometropes.
    Chen Z; Zhou J; Qu X; Zhou X; Xue F;
    Cont Lens Anterior Eye; 2018 Jun; 41(3):263-266. PubMed ID: 29329901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of orthokeratology on axial length elongation in children with myopia: Contralateral comparison study.
    Na M; Yoo A
    Jpn J Ophthalmol; 2018 May; 62(3):327-334. PubMed ID: 29524061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myopia control using toric orthokeratology (TO-SEE study).
    Chen C; Cheung SW; Cho P
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6510-7. PubMed ID: 24003088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Sugimoto K
    Curr Eye Res; 2017 May; 42(5):713-720. PubMed ID: 27767354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choroidal thickness and axial length changes in myopic children treated with orthokeratology.
    Li Z; Cui D; Hu Y; Ao S; Zeng J; Yang X
    Cont Lens Anterior Eye; 2017 Dec; 40(6):417-423. PubMed ID: 28935528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Orthokeratology on Axial Length Elongation in Anisomyopic Children.
    Zhang Y; Chen Y
    Optom Vis Sci; 2019 Jan; 96(1):43-47. PubMed ID: 30570595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control effect of orthokeratology on axial length elongation in Chinese children with myopia.
    Zhu MJ; Feng HY; He XG; Zou HD; Zhu JF
    BMC Ophthalmol; 2014 Nov; 14():141. PubMed ID: 25417926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy, Safety and Acceptability of Orthokeratology on Slowing Axial Elongation in Myopic Children by Meta-Analysis.
    Li SM; Kang MT; Wu SS; Liu LR; Li H; Chen Z; Wang N
    Curr Eye Res; 2016 May; 41(5):600-8. PubMed ID: 26237276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthokeratology combined with spectacles in moderate to high myopia adolescents.
    Wang F; Wu G; Xu X; Wu H; Peng Y; Lin Y; Jiang J
    Cont Lens Anterior Eye; 2024 Feb; 47(1):102088. PubMed ID: 37977905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Orthokeratology on Choroidal Thickness and Axial Length.
    Chen Z; Xue F; Zhou J; Qu X; Zhou X
    Optom Vis Sci; 2016 Sep; 93(9):1064-71. PubMed ID: 27273270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results.
    Kinoshita N; Konno Y; Hamada N; Kanda Y; Shimmura-Tomita M; Kakehashi A
    Jpn J Ophthalmol; 2018 Sep; 62(5):544-553. PubMed ID: 29974278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of axial length measurements for monitoring myopic progression in orthokeratology.
    Cheung SW; Cho P
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1613-5. PubMed ID: 23361504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Stabilizing effect of orthokeratology lenses (ten-year follow-up results)].
    Tarutta EP; Verzhanskaya TY
    Vestn Oftalmol; 2017; 133(1):49-54. PubMed ID: 28291200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discontinuation of orthokeratology and myopic progression.
    Lee TT; Cho P
    Optom Vis Sci; 2010 Dec; 87(12):1053-6. PubMed ID: 21037497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the clinical efficacy of orthokeratology and 0.01% atropine for retardation of myopia progression in myopic children.
    Zhang J; Li Z; Cheng Z; Wang T; Shi W
    Cont Lens Anterior Eye; 2024 Feb; 47(1):102094. PubMed ID: 37985346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.