These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28253562)

  • 1. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells.
    Wang W; He J; Cao Y; Kong L; Zheng X; Wu Y; Chen X; Li S; Wu Z; Kang J
    Nanoscale Res Lett; 2017 Dec; 12(1):160. PubMed ID: 28253562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Core/Shell of ZnO/TiO
    Kim JM; Lee BS; Hwang SW
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32878143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell.
    Yan X; Zhang C; Wang J; Zhang X; Ren X
    Nanoscale Res Lett; 2017 Dec; 12(1):14. PubMed ID: 28058646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanowire perovskite solar cell.
    Im JH; Luo J; Franckevičius M; Pellet N; Gao P; Moehl T; Zakeeruddin SM; Nazeeruddin MK; Grätzel M; Park NG
    Nano Lett; 2015 Mar; 15(3):2120-6. PubMed ID: 25710268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Efficiency Solar Cells from Extremely Low Minority Carrier Lifetime Substrates Using Radial Junction Nanowire Architecture.
    Raj V; Vora K; Fu L; Tan HH; Jagadish C
    ACS Nano; 2019 Oct; 13(10):12015-12023. PubMed ID: 31539225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced performance of lead sulfide quantum dot-sensitized solar cells by controlling the thickness of metal halide perovskite shells.
    Seo G; Kim S; Choi H; Kim MC
    Heliyon; 2023 Oct; 9(10):e20276. PubMed ID: 37767508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.
    Tian B; Zheng X; Kempa TJ; Fang Y; Yu N; Yu G; Huang J; Lieber CM
    Nature; 2007 Oct; 449(7164):885-9. PubMed ID: 17943126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical optimisation of core-shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells.
    Vismara R; Isabella O; Ingenito A; Si FT; Zeman M
    Beilstein J Nanotechnol; 2019; 10():322-331. PubMed ID: 30800571
    [No Abstract]   [Full Text] [Related]  

  • 9. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.
    Yu Y; Li J; Geng D; Wang J; Zhang L; Andrew TL; Arnold MS; Wang X
    ACS Nano; 2015 Jan; 9(1):564-72. PubMed ID: 25549153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with "caterpillar-like" structure.
    McCune M; Zhang W; Deng Y
    Nano Lett; 2012 Jul; 12(7):3656-62. PubMed ID: 22731504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the Sb
    Hector G; Eensalu JS; Katerski A; Roussel H; Chaix-Pluchery O; Appert E; Donatini F; Acik IO; Kärber E; Consonni V
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Charge Extraction in Perovskite-Based Core-Shell Nanowires.
    Ashley MJ; Kluender EJ; Mirkin CA
    ACS Nano; 2018 Jul; 12(7):7206-7212. PubMed ID: 29975505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.
    Aharon S; Gamliel S; El Cohen B; Etgar L
    Phys Chem Chem Phys; 2014 Jun; 16(22):10512-8. PubMed ID: 24736900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional (1D) ZnO nanowires dye sensitized solar cell.
    Kiliç B; Wang L; Ozdemir O; Lu M; Tüzemen S
    J Nanosci Nanotechnol; 2013 Jan; 13(1):333-8. PubMed ID: 23646734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells.
    Wang S; Yan X; Zhang X; Li J; Ren X
    Nanoscale Res Lett; 2015; 10():22. PubMed ID: 25852320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure.
    Park JH; Nandi R; Sim JK; Um DY; Kang S; Kim JS; Lee CR
    RSC Adv; 2018 Jun; 8(37):20585-20592. PubMed ID: 35542348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-Friendly AgBiS
    Xiao Y; Wang H; Awai F; Shibayama N; Kubo T; Segawa H
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3969-3978. PubMed ID: 33448786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emission Spectroscopy Investigation of the Enhancement of Carrier Collection Efficiency in AgBiS
    Xiao Y; Wang H; Awai F; Shibayama N; Kubo T; Segawa H
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6994-7003. PubMed ID: 35099930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.
    Kim A; Lee H; Kwon HC; Jung HS; Park NG; Jeong S; Moon J
    Nanoscale; 2016 Mar; 8(12):6308-16. PubMed ID: 26465213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold-Sensitized Silicon/ZnO Core/Shell Nanowire Array for Solar Water Splitting.
    Zhang FQ; Hu Y; Sun RN; Fu H; Peng KQ
    Front Chem; 2019; 7():206. PubMed ID: 31001523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.