These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28253644)

  • 1. Erratum: Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses [J. Acoust. Soc. Am. 140(3), 2027-2038 (2016)].
    Mertes IB; Leek MR
    J Acoust Soc Am; 2017 Feb; 141(2):781. PubMed ID: 28253644
    [No Abstract]   [Full Text] [Related]  

  • 2. Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses.
    Mertes IB; Leek MR
    J Acoust Soc Am; 2016 Sep; 140(3):2027. PubMed ID: 27914370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Stimulus ratio dependence of low-frequency distortion-product otoacoustic emissions in humans [J. Acoust. Soc. Am. 137(2), 679-689 (2015)].
    Christensen AT; Ordoñez R; Hammershøi D
    J Acoust Soc Am; 2015 Oct; 138(4):2131. PubMed ID: 26520295
    [No Abstract]   [Full Text] [Related]  

  • 5. Erratum: The influence of distributed source regions in the formation of the nonlinear distortion component of cubic distortion-product otoacoustic emissions [J. Acoust. Soc. Am. 145(5), 2909-2931 (2019)].
    Vencovský V; Zelle D; Dalhoff E; Gummer AW; Vetešník A
    J Acoust Soc Am; 2019 Jul; 146(1):381. PubMed ID: 31370654
    [No Abstract]   [Full Text] [Related]  

  • 6. Comment on "Ear Asymmetries in middle-ear, cochlear, and brainstem responses in human infants" [J. Acoust. Soc. Am. 123, 1504-1512].
    Sininger Y; Cone B
    J Acoust Soc Am; 2008 Sep; 124(3):1401-3. PubMed ID: 19045630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of suppression on the periodicity of stimulus frequency otoacoustic emissions: experimental data.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):871-82. PubMed ID: 12942969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of age on speech recognition in noise and on contralateral transient evoked otoacoustic emission suppression.
    Yilmaz ST; Sennaroğlu G; Sennaroğlu L; Köse SK
    J Laryngol Otol; 2007 Nov; 121(11):1029-34. PubMed ID: 17381896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of contralateral suppression of transiently evoked otoacoustic emissions in fibromyalgia syndrome.
    Gunduz B; Bayazit YA; Celenk F; Saridoğan C; Guclu AG; Orcan E; Meray J
    J Laryngol Otol; 2008 Oct; 122(10):1047-51. PubMed ID: 18318918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of interaural intensity and time disparity on transient evoked otoacoustic emissions.
    Shi Y; Polyakov A; Pratt H
    Hear Res; 1997 Aug; 110(1-2):259-65. PubMed ID: 9282908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effect of suppression on the periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):859-70. PubMed ID: 12942968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otoacoustic emission and auditory efferent function testing in patients with sensori-neural hearing loss.
    Liang F; Liu C; Liu B
    Chin Med J (Engl); 1997 Feb; 110(2):139-41. PubMed ID: 9594286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption.
    Long GR; Tubis A
    J Acoust Soc Am; 1988 Oct; 84(4):1343-53. PubMed ID: 3198870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species differences of distortion-product otoacoustic emissions: comment on "Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones" [J. Acoust. Soc. Am. 102, 413-429 (1997)].
    Whitehead ML
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2740-2. PubMed ID: 9604365
    [No Abstract]   [Full Text] [Related]  

  • 15. Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. III. Response to a single tone at multiple suppression levels.
    Murphy WJ; Tubis A; Talmadge CL; Long GR; Krieg EF
    J Acoust Soc Am; 1996 Dec; 100(6):3979-82. PubMed ID: 8969492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the temporal behavior of distortion product otoacoustic emissions.
    Tubis A; Talmadge CL; Tong C
    J Acoust Soc Am; 2000 Apr; 107(4):2112-27. PubMed ID: 10790037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The First Jerger Lecture. Contralateral suppression of otoacoustic emissions: an index of the function of the medial olivocochlear system.
    Berlin CI; Hood LJ; Hurley A; Wen H
    Otolaryngol Head Neck Surg; 1994 Jan; 110(1):3-21. PubMed ID: 8290299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in transient evoked otoacoustic emissions contralateral suppression in infants].
    Durante AS; Carvallo RM
    Pro Fono; 2006; 18(1):49-56. PubMed ID: 16625871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contralateral suppression of linear and nonlinear transient evoked otoacoustic emissions in neonates at risk for hearing loss.
    Durante AS; Carvallo RM
    J Commun Disord; 2008; 41(1):70-83. PubMed ID: 17585930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners.
    Jacobson M; Kim S; Romney J; Zhu X; Frisina RD
    Laryngoscope; 2003 Oct; 113(10):1707-13. PubMed ID: 14520094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.