These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28253669)

  • 1. Acoustic streaming generated by two orthogonal standing waves propagating between two rigid walls.
    Doinikov AA; Thibault P; Marmottant P
    J Acoust Soc Am; 2017 Feb; 141(2):1282. PubMed ID: 28253669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2003 Jan; 113(1):153-60. PubMed ID: 12558255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by two counterpropagating leaky surface waves.
    Doinikov AA; Thibault P; Marmottant P
    Phys Rev E; 2017 Jul; 96(1-1):013101. PubMed ID: 29347059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscous torque on spherical micro particles in two orthogonal acoustic standing wave fields.
    Lamprecht A; Schwarz T; Wang J; Dual J
    J Acoust Soc Am; 2015 Jul; 138(1):23-32. PubMed ID: 26233003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems.
    Devendran C; Albrecht T; Brenker J; Alan T; Neild A
    Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2017 Jun; 141(6):4418. PubMed ID: 28618831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic radiation force exerted on a small spheroidal rigid particle by a beam of arbitrary wavefront: Examples of traveling and standing plane waves.
    Silva GT; Drinkwater BW
    J Acoust Soc Am; 2018 Nov; 144(5):EL453. PubMed ID: 30522303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outer Acoustic Streaming Flow Driven by Asymmetric Acoustic Resonances.
    Lei J; Zheng G; Yao Z; Huang Z
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.
    Gubaidullin AA; Yakovenko AV
    J Acoust Soc Am; 2015 Jun; 137(6):3281-7. PubMed ID: 26093418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bulk-driven acoustic streaming at resonance in closed microcavities.
    Bach JS; Bruus H
    Phys Rev E; 2019 Aug; 100(2-1):023104. PubMed ID: 31574609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic streaming in a rotating fluid.
    Whitworth G
    J Acoust Soc Am; 1990 Oct; 88(4):1960-3. PubMed ID: 2262637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient unidirectional acoustic streaming in annular resonators.
    Amari M; Gusev V; Joly N
    Ultrasonics; 2004 Apr; 42(1-9):573-8. PubMed ID: 15047349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling of the mechanisms of acoustic streaming induced by sharp edges.
    Zhang C; Guo X; Royon L; Brunet P
    Phys Rev E; 2020 Oct; 102(4-1):043110. PubMed ID: 33212576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.