These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 28253672)
1. Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users. Sagi E; Svirsky MA J Acoust Soc Am; 2017 Feb; 141(2):1027. PubMed ID: 28253672 [TBL] [Abstract][Full Text] [Related]
2. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise. Mc Laughlin M; Reilly RB; Zeng FG J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025 [TBL] [Abstract][Full Text] [Related]
3. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users. Bonnard D; Schwalje A; Gantz B; Choi I Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380 [TBL] [Abstract][Full Text] [Related]
4. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects. Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538 [TBL] [Abstract][Full Text] [Related]
5. Role of slow temporal modulations in speech identification for cochlear implant users. Gnansia D; Lazard DS; Léger AC; Fugain C; Lancelin D; Meyer B; Lorenzi C Int J Audiol; 2014 Jan; 53(1):48-54. PubMed ID: 24195655 [TBL] [Abstract][Full Text] [Related]
6. Perception of vowels and prosody by cochlear implant recipients in noise. Van Zyl M; Hanekom JJ J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128 [TBL] [Abstract][Full Text] [Related]
7. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition. Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758 [TBL] [Abstract][Full Text] [Related]
8. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315 [TBL] [Abstract][Full Text] [Related]
9. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372 [TBL] [Abstract][Full Text] [Related]
10. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners. Goldsworthy RL; Delhorne LA; Braida LD; Reed CM Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419 [TBL] [Abstract][Full Text] [Related]
11. Masking release and the contribution of obstruent consonants on speech recognition in noise by cochlear implant users. Li N; Loizou PC J Acoust Soc Am; 2010 Sep; 128(3):1262-71. PubMed ID: 20815461 [TBL] [Abstract][Full Text] [Related]
12. Assessment of speech recognition abilities in quiet and in noise: a comparison between self-administered home testing and testing in the clinic for adult cochlear implant users. de Graaff F; Huysmans E; Merkus P; Theo Goverts S; Smits C Int J Audiol; 2018 Nov; 57(11):872-880. PubMed ID: 30261772 [TBL] [Abstract][Full Text] [Related]
13. Acoustic Analysis of Persian Vowels in Cochlear Implant Users: A Comparison With Hearing-impaired Children Using Hearing Aid and Normal-hearing Children. Jafari N; Yadegari F; Jalaie S J Voice; 2016 Nov; 30(6):763.e1-763.e7. PubMed ID: 26725549 [TBL] [Abstract][Full Text] [Related]
14. The effect of presentation level and stimulation rate on speech perception and modulation detection for cochlear implant users. Brochier T; McDermott HJ; McKay CM J Acoust Soc Am; 2017 Jun; 141(6):4097. PubMed ID: 28618807 [TBL] [Abstract][Full Text] [Related]
15. The Lombard effect observed in speech produced by cochlear implant users in noisy environments: A naturalistic study. Lee J; Ali H; Ziaei A; Tobey EA; Hansen JHL J Acoust Soc Am; 2017 Apr; 141(4):2788. PubMed ID: 28464686 [TBL] [Abstract][Full Text] [Related]
17. Optimising the effect of noise reduction algorithm ClearVoice in cochlear implant users by increasing the maximum comfort levels. Dingemanse JG; Goedegebure A Int J Audiol; 2018 Mar; 57(3):230-235. PubMed ID: 29065731 [TBL] [Abstract][Full Text] [Related]
18. Top-down restoration of speech in cochlear-implant users. Bhargava P; Gaudrain E; Başkent D Hear Res; 2014 Mar; 309():113-23. PubMed ID: 24368138 [TBL] [Abstract][Full Text] [Related]
19. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing. Carroll J; Tiaden S; Zeng FG J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360 [TBL] [Abstract][Full Text] [Related]
20. Bilateral Versus Unilateral Cochlear Implantation in Adult Listeners: Speech-On-Speech Masking and Multitalker Localization. Rana B; Buchholz JM; Morgan C; Sharma M; Weller T; Konganda SA; Shirai K; Kawano A Trends Hear; 2017; 21():2331216517722106. PubMed ID: 28752811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]