These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28253703)

  • 21. Speaker-independent consonant classification in continuous speech with distinctive features and neural networks.
    De Mori R; Flammia G
    J Acoust Soc Am; 1993 Dec; 94(6):3091-103. PubMed ID: 8300949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of perceived speaker identity in F0 normalization of vowels.
    Johnson K
    J Acoust Soc Am; 1990 Aug; 88(2):642-54. PubMed ID: 2212287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speaker-independent auditory attention decoding without access to clean speech sources.
    Han C; O'Sullivan J; Luo Y; Herrero J; Mehta AD; Mesgarani N
    Sci Adv; 2019 May; 5(5):eaav6134. PubMed ID: 31106271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectro-temporal modulation energy based mask for robust speaker identification.
    Chi TS; Lin TH; Hsu CC
    J Acoust Soc Am; 2012 May; 131(5):EL368-74. PubMed ID: 22559454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical tracking of voice pitch in the presence of multiple speakers depends on selective attention.
    Brodbeck C; Simon JZ
    Front Neurosci; 2022; 16():828546. PubMed ID: 36003957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Robust Speaker Identification System Using the Responses from a Model of the Auditory Periphery.
    Islam MA; Jassim WA; Cheok NS; Zilany MS
    PLoS One; 2016; 11(7):e0158520. PubMed ID: 27392046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regularized Speaker Adaptation of KL-HMM for Dysarthric Speech Recognition.
    Kim M; Kim Y; Yoo J; Wang J; Kim H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1581-1591. PubMed ID: 28320669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gender recognition from speech. Part II: Fine analysis.
    Childers DG; Wu K
    J Acoust Soc Am; 1991 Oct; 90(4 Pt 1):1841-56. PubMed ID: 1755877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards online maximum-likelihood-based speech clustering and separation.
    Souden M; Kinoshita K; Nakatani T
    J Acoust Soc Am; 2013 May; 133(5):EL339-45. PubMed ID: 23656091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pitch and voiced/unvoiced determination with an auditory model.
    Van Immerseel LM; Martens JP
    J Acoust Soc Am; 1992 Jun; 91(6):3511-26. PubMed ID: 1619127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Feature Selection Algorithm on Speech Emotion Recognition Using Deep Convolutional Neural Network.
    Farooq M; Hussain F; Baloch NK; Raja FR; Yu H; Zikria YB
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Speaker normalization for chinese vowel recognition in cochlear implants.
    Luo X; Fu QJ
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1358-61. PubMed ID: 16042003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning for Talker-dependent Reverberant Speaker Separation: An Empirical Study.
    Delfarah M; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2019 Nov; 27(11):1839-1848. PubMed ID: 33748321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Speaker Adaptation on Articulation and Acoustics for Articulation-to-Speech Synthesis.
    Cao B; Wisler A; Wang J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Deep Ensemble Learning Method for Monaural Speech Separation.
    Zhang XL; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2016 Mar; 24(5):967-977. PubMed ID: 27917394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.