BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 2825385)

  • 1. [Phosphate inhibition of the conversion of ribose-1-phosphate--a product of purine nucleoside phosphorylase splitting in the phosphoribomutase reaction].
    Golovatskiĭ ID; Tsegel'skiĭ AA
    Ukr Biokhim Zh (1978); 1987; 59(5):45-9. PubMed ID: 2825385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Iodoribose 1-phosphate, an analog of ribose 1-phosphate. Enzymatic synthesis and kinetic studies with enzymes of purine, pyrimidine, and sugar phosphate metabolism.
    Choi HS; Stoeckler JD; Parks RE
    J Biol Chem; 1986 Jan; 261(2):599-607. PubMed ID: 2934389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acholeplasma laidlawii B-PG9 adenine-specific purine nucleoside phosphorylase that accepts ribose-1-phosphate, deoxyribose-1-phosphate, and xylose-1-phosphate.
    McElwain MC; Williams MV; Pollack JD
    J Bacteriol; 1988 Feb; 170(2):564-7. PubMed ID: 3123458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Interrelations of NAD and adenosine transformation in the rat liver].
    Golovatskiĭ ID; Tsegel'skiĭ AA
    Ukr Biokhim Zh (1978); 1988; 60(2):30-5. PubMed ID: 2969155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of Drosophila melanogaster methylthioadenosine nucleoside phosphorylase.
    Shugart L; Mahoney L; Chastain B
    Int J Biochem; 1981; 13(5):559-64. PubMed ID: 6786932
    [No Abstract]   [Full Text] [Related]  

  • 7. Decreased phosphoribosylpyrophosphate as the basis for decreased purine synthesis during amino acid starvation of human lymphoblasts.
    Boss GR
    J Biol Chem; 1984 Mar; 259(5):2936-41. PubMed ID: 6199353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles.
    Rader RL; Hochstadt J
    J Bacteriol; 1976 Oct; 128(1):290-301. PubMed ID: 789336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The standard Gibbs free energy change of hydrolysis of alpha-D-ribose 1-phosphate.
    Camici M; Sgarrella F; Ipata PL; Mura U
    Arch Biochem Biophys; 1980 Nov; 205(1):191-7. PubMed ID: 6778396
    [No Abstract]   [Full Text] [Related]  

  • 10. Recycling of alpha-D-ribose 1-phosphate for nucleoside interconversion.
    Giorgelli F; Bottai C; Mascia L; Scolozzi C; Camici M; Ipata PL
    Biochim Biophys Acta; 1997 Apr; 1335(1-2):6-22. PubMed ID: 9133638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the purine salvage pathway in rat liver.
    Kim YA; King MT; Teague WE; Rufo GA; Veech RL; Passonneau JV
    Am J Physiol; 1992 Mar; 262(3 Pt 1):E344-52. PubMed ID: 1372483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorolytic and ribosyl transfer mechanisms of purified chicken liver purine nucleoside phosphorylase.
    Mora M; Bozal J
    Comp Biochem Physiol B; 1985; 82(4):805-13. PubMed ID: 3937661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of purine and pyrimidine nucleoside phosphorylases in heart, kidney, and liver.
    Rubio R; Berne RM
    Am J Physiol; 1980 Dec; 239(6):H721-30. PubMed ID: 6778226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribose-1-P is the essential precursor for nucleic acid synthesis in animal cells growing on uridine in the absence of sugar.
    Wice BM; Kennell D
    J Biol Chem; 1982 Mar; 257(5):2578-83. PubMed ID: 6277907
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of de novo purine synthesis in human and rat tissue: role of oxidative pentose phosphate pathway activity and of ribose-5-phosphate and phosphoribosylpyrophosphate availability.
    Sperling O; Boer P; Lipstein B; Kupfer B; Brosh S; Zoref E; Bashkin P; de Vries A
    Adv Exp Med Biol; 1977; 76A():481-7. PubMed ID: 193377
    [No Abstract]   [Full Text] [Related]  

  • 16. Methylthioadenosine nucleoside phosphorylase deficiency in methylthio-dependent cancer cells.
    Toohey JI
    Biochem Biophys Res Commun; 1978 Jul; 83(1):27-35. PubMed ID: 100109
    [No Abstract]   [Full Text] [Related]  

  • 17. [Purine nucleoside phosphorylase. Catalytic reaction mechanism. II. Product-reaction-inhibition (author's transl)].
    Fusté R; Bozal J
    Rev Esp Fisiol; 1975 Dec; 31(4):265-9. PubMed ID: 814590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of phosphoribomutase in Bacillus cereus growing on nucleosides.
    Ipata PL; Sgarrella F; Catalani R; Tozzi MG
    Biochim Biophys Acta; 1983 Jan; 755(2):253-6. PubMed ID: 6299371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-methylthioribose 1-phosphate: a product of partially purified, rat liver 5'-methylthioadenosine phosphorylase activity.
    Ferro AJ; Wrobel NC; Nicolette JA
    Biochim Biophys Acta; 1979 Sep; 570(1):65-73. PubMed ID: 114225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functioning of purine salvage pathways in Escherichia coli K-12.
    Nygaard P
    Adv Exp Med Biol; 1977; 76A():186-95. PubMed ID: 193369
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.