BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28254062)

  • 1. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand.
    Phairuang W; Hata M; Furuuchi M
    J Environ Sci (China); 2017 Feb; 52():85-97. PubMed ID: 28254062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles.
    Phairuang W; Suwattiga P; Chetiyanukornkul T; Hongtieab S; Limpaseni W; Ikemori F; Hata M; Furuuchi M
    Environ Pollut; 2019 Apr; 247():238-247. PubMed ID: 30685664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.
    Duc HN; Bang HQ; Quang NX
    Environ Monit Assess; 2016 Feb; 188(2):106. PubMed ID: 26797812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016.
    Yin S; Wang X; Zhang X; Guo M; Miura M; Xiao Y
    Environ Pollut; 2019 Nov; 254(Pt A):112949. PubMed ID: 31376599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of major air pollutants from crop residue burning in mainland China, 2000-2014.
    Jin Q; Ma X; Wang G; Yang X; Guo F
    J Environ Sci (China); 2018 Aug; 70():190-205. PubMed ID: 30037405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources.
    Pouliot G; Rao V; McCarty JL; Soja A
    J Air Waste Manag Assoc; 2017 May; 67(5):613-622. PubMed ID: 27964698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products.
    Li J; Bo Y; Xie S
    J Environ Sci (China); 2016 Jun; 44():158-170. PubMed ID: 27266312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-resolution emission inventory of air pollutants from primary crop residue burning over Northern India based on VIIRS thermal anomalies.
    Singh T; Biswal A; Mor S; Ravindra K; Singh V; Mor S
    Environ Pollut; 2020 Nov; 266(Pt 1):115132. PubMed ID: 32717556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local PM
    Chen W; Tong DQ; Zhang S; Zhang X; Zhao H
    J Environ Sci (China); 2017 Jul; 57():15-23. PubMed ID: 28647234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of field biomass burning on local pollution and long-range transport of PM
    Uranishi K; Ikemori F; Shimadera H; Kondo A; Sugata S
    Environ Pollut; 2019 Jan; 244():414-422. PubMed ID: 30352356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning.
    Kim Oanh NT; Leelasakultum K
    Sci Total Environ; 2011 May; 409(11):2261-71. PubMed ID: 21440929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ambient air quality during a rice straw burning episode.
    Tai-Yi Y
    J Environ Monit; 2012 Mar; 14(3):817-29. PubMed ID: 22245854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions.
    Sillapapiromsuk S; Chantara S; Tengjaroenkul U; Prasitwattanaseree S; Prapamontol T
    Chemosphere; 2013 Nov; 93(9):1912-9. PubMed ID: 23891258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model-ready emission inventory for crop residue open burning in the context of Nepal.
    Das B; Bhave PV; Puppala SP; Shakya K; Maharjan B; Byanju RM
    Environ Pollut; 2020 Nov; 266(Pt 3):115069. PubMed ID: 32763722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.
    Wang K; Tian H; Hua S; Zhu C; Gao J; Xue Y; Hao J; Wang Y; Zhou J
    Sci Total Environ; 2016 Jul; 559():7-14. PubMed ID: 27054489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China.
    Chen Y; Xie SD
    Sci Total Environ; 2014 Mar; 473-474():507-17. PubMed ID: 24394363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam.
    Lasko K; Vadrevu K
    Environ Pollut; 2018 May; 236():795-806. PubMed ID: 29459334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India.
    Sahu SK; Mangaraj P; Beig G; Samal A; Chinmay Pradhan ; Dash S; Tyagi B
    Environ Pollut; 2021 Oct; 286():117165. PubMed ID: 33971471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India.
    Vadrevu KP; Ellicott E; Badarinath KV; Vermote E
    Environ Pollut; 2011 Jun; 159(6):1560-9. PubMed ID: 21444135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of agricultural activities on atmospheric pollution during post-monsoon harvesting seasons at a rural location of Indo-Gangetic Plain.
    Singh T; Ravindra K; Beig G; Mor S
    Sci Total Environ; 2021 Nov; 796():148903. PubMed ID: 34274681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.