These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

985 related articles for article (PubMed ID: 28254327)

  • 1. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2017 Sep; 12(5):055011. PubMed ID: 28944766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.
    Kook MS; Roh HS; Kim BH
    Dent Mater J; 2018 Jul; 37(4):599-610. PubMed ID: 29731489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.
    Kim BS; Yang SS; Kim CS
    Colloids Surf B Biointerfaces; 2018 Oct; 170():421-429. PubMed ID: 29957531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release.
    Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M
    Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles.
    Wutticharoenmongkol P; Pavasant P; Supaphol P
    Biomacromolecules; 2007 Aug; 8(8):2602-10. PubMed ID: 17655356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering.
    Qi H; Ye Z; Ren H; Chen N; Zeng Q; Wu X; Lu T
    Life Sci; 2016 Mar; 148():139-44. PubMed ID: 26874032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities.
    Kim Y; Kim G
    Colloids Surf B Biointerfaces; 2015 Jan; 125():181-9. PubMed ID: 25486326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M; Gloria A; Coelho J; Bartolo P; Ciurana J
    Proc Inst Mech Eng H; 2017 Jun; 231(6):555-564. PubMed ID: 28056713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity.
    Yu J; Xu Y; Li S; Seifert GV; Becker ML
    Biomacromolecules; 2017 Dec; 18(12):4171-4183. PubMed ID: 29020441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA; Lee SH; Kim WD
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.
    He FL; Li DW; He J; Liu YY; Ahmad F; Liu YL; Deng X; Ye YJ; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():18-27. PubMed ID: 29525092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.
    Song J; Zhu G; Wang L; An G; Shi X; Wang Y
    Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.