These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
985 related articles for article (PubMed ID: 28254327)
21. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
22. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Ba Linh NT; Min YK; Lee BT J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865 [TBL] [Abstract][Full Text] [Related]
24. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Yildirim ED; Besunder R; Pappas D; Allen F; Güçeri S; Sun W Biofabrication; 2010 Mar; 2(1):014109. PubMed ID: 20811124 [TBL] [Abstract][Full Text] [Related]
25. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
26. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
27. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
28. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Lee CM; Yang SW; Jung SC; Kim BH J Nanosci Nanotechnol; 2017 Apr; 17(4):2747-750. PubMed ID: 29664596 [TBL] [Abstract][Full Text] [Related]
29. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
30. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147 [TBL] [Abstract][Full Text] [Related]
31. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Raucci MG; D'Antò V; Guarino V; Sardella E; Zeppetelli S; Favia P; Ambrosio L Acta Biomater; 2010 Oct; 6(10):4090-9. PubMed ID: 20417736 [TBL] [Abstract][Full Text] [Related]
32. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
33. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Zhang X; Du X; Li D; Ao R; Yu B; Yu B J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120 [TBL] [Abstract][Full Text] [Related]
34. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. Milovac D; Gamboa-Martínez TC; Ivankovic M; Gallego Ferrer G; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():264-72. PubMed ID: 25063118 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015 [TBL] [Abstract][Full Text] [Related]
36. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
37. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Keivani F; Shokrollahi P; Zandi M; Irani S; F Shokrolahi ; Khorasani SC Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():78-88. PubMed ID: 27523999 [TBL] [Abstract][Full Text] [Related]
38. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. Chen R; Chen HB; Xue PP; Yang WG; Luo LZ; Tong MQ; Zhong B; Xu HL; Zhao YZ; Yuan JD J Mater Chem B; 2021 Jan; 9(4):1107-1122. PubMed ID: 33427267 [TBL] [Abstract][Full Text] [Related]
39. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related]
40. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. An SH; Matsumoto T; Miyajima H; Nakahira A; Kim KH; Imazato S Dent Mater; 2012 Dec; 28(12):1221-31. PubMed ID: 23018082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]