These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 28254615)
1. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Li-Chun Hsieh K; Chen CY; Lo CM Comput Biol Med; 2017 Apr; 83():102-108. PubMed ID: 28254615 [TBL] [Abstract][Full Text] [Related]
2. An automatic glioma grading method based on multi-feature extraction and fusion. Zhan T; Feng P; Hong X; Lu Z; Xiao L; Zhang Y Technol Health Care; 2017 Jul; 25(S1):377-385. PubMed ID: 28582926 [TBL] [Abstract][Full Text] [Related]
3. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided grading of gliomas based on local and global MRI features. Hsieh KL; Lo CM; Hsiao CJ Comput Methods Programs Biomed; 2017 Feb; 139():31-38. PubMed ID: 28187893 [TBL] [Abstract][Full Text] [Related]
5. Effect of a computer-aided diagnosis system on radiologists' performance in grading gliomas with MRI. Hsieh KL; Tsai RJ; Teng YC; Lo CM PLoS One; 2017; 12(2):e0171342. PubMed ID: 28158235 [TBL] [Abstract][Full Text] [Related]
6. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma. Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514 [TBL] [Abstract][Full Text] [Related]
7. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided diagnosis system for grading brain tumor using histopathology images based on color and texture features. Elazab N; Gab Allah W; Elmogy M BMC Med Imaging; 2024 Jul; 24(1):177. PubMed ID: 39030508 [TBL] [Abstract][Full Text] [Related]
9. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Server A; Kulle B; Gadmar ØB; Josefsen R; Kumar T; Nakstad PH Eur J Radiol; 2011 Nov; 80(2):462-70. PubMed ID: 20708868 [TBL] [Abstract][Full Text] [Related]
10. Association Between Histopathology and Magnetic Resonance Imaging Texture in Grading Gliomas Based on Intraoperative Magnetic Resonance Navigated Stereotactic Biopsy. Rui W; Pang H; Xie Q; Wang Y; Duan S; Ren Y; Yao Z J Comput Assist Tomogr; 2021 Sep-Oct 01; 45(5):728-735. PubMed ID: 34347700 [TBL] [Abstract][Full Text] [Related]
11. Glioma grading using a machine-learning framework based on optimized features obtained from T Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126 [TBL] [Abstract][Full Text] [Related]
13. Glioma grading using apparent diffusion coefficient map: application of histogram analysis based on automatic segmentation. Lee J; Choi SH; Kim JH; Sohn CH; Lee S; Jeong J NMR Biomed; 2014 Sep; 27(9):1046-52. PubMed ID: 25042540 [TBL] [Abstract][Full Text] [Related]
14. The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas. Alis D; Bagcilar O; Senli YD; Isler C; Yergin M; Kocer N; Islak C; Kizilkilic O Clin Radiol; 2020 May; 75(5):351-357. PubMed ID: 31973941 [TBL] [Abstract][Full Text] [Related]
15. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic accuracy of MRI texture analysis for grading gliomas. Ditmer A; Zhang B; Shujaat T; Pavlina A; Luibrand N; Gaskill-Shipley M; Vagal A J Neurooncol; 2018 Dec; 140(3):583-589. PubMed ID: 30145731 [TBL] [Abstract][Full Text] [Related]
17. Glioma Tumor Grade Identification Using Artificial Intelligent Techniques. Ahammed Muneer K V ; Rajendran VR; K PJ J Med Syst; 2019 Mar; 43(5):113. PubMed ID: 30900029 [TBL] [Abstract][Full Text] [Related]
18. Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma's grade and IDH status. De Looze C; Beausang A; Cryan J; Loftus T; Buckley PG; Farrell M; Looby S; Reilly R; Brett F; Kearney H J Neurooncol; 2018 Sep; 139(2):491-499. PubMed ID: 29770897 [TBL] [Abstract][Full Text] [Related]
19. Intensity-Invariant Texture Analysis for Classification of BI-RADS Category 3 Breast Masses. Lo CM; Moon WK; Huang CS; Chen JH; Yang MC; Chang RF Ultrasound Med Biol; 2015 Jul; 41(7):2039-48. PubMed ID: 25843514 [TBL] [Abstract][Full Text] [Related]
20. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Skogen K; Schulz A; Dormagen JB; Ganeshan B; Helseth E; Server A Eur J Radiol; 2016 Apr; 85(4):824-9. PubMed ID: 26971430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]