BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 28254651)

  • 1. How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study.
    Meyberg S; Sommer W; Dimigen O
    Neuropsychologia; 2017 May; 99():64-80. PubMed ID: 28254651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revising the link between microsaccades and the spatial cueing of voluntary attention.
    Meyberg S; Sinn P; Engbert R; Sommer W
    Vision Res; 2017 Apr; 133():47-60. PubMed ID: 28163059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large lateralized EDAN-like brain potentials in a gaze-shift detection task.
    Kirk Driller K; Stephani T; Dimigen O; Sommer W
    Psychophysiology; 2019 Jul; 56(7):e13361. PubMed ID: 30848515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye gaze triggers reflexive attention shifts: evidence from lateralised ERPs.
    Feng Q; Zhang X
    Brain Res; 2014 Nov; 1589():37-44. PubMed ID: 25241361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades.
    Tian X; Yoshida M; Hafed ZM
    J Neurophysiol; 2018 May; 119(5):1962-1980. PubMed ID: 29465321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An early parietal ERP component of the frontoparietal system: EDAN not = N2pc.
    Praamstra P; Kourtis D
    Brain Res; 2010 Mar; 1317():203-10. PubMed ID: 20059986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateralized ERP components related to spatial orienting: discriminating the direction of attention from processing sensory aspects of the cue.
    Jongen EM; Smulders FT; Van der Heiden JS
    Psychophysiology; 2007 Nov; 44(6):968-86. PubMed ID: 17617171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural activity associated with attention orienting triggered by gaze cues: A study of lateralized ERPs.
    Holmes A; Mogg K; Garcia LM; Bradley BP
    Soc Neurosci; 2010; 5(3):285-95. PubMed ID: 20162493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossmodal coupling of oculomotor control and spatial attention in vision and audition.
    Rolfs M; Engbert R; Kliegl R
    Exp Brain Res; 2005 Oct; 166(3-4):427-39. PubMed ID: 16032403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ERP study of preparatory and inhibitory mechanisms in a cued saccade task.
    Van der Stigchel S; Heslenfeld DJ; Theeuwes J
    Brain Res; 2006 Aug; 1105(1):32-45. PubMed ID: 16595127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsaccade directions do not predict directionality of illusory brightness changes of overlapping transparent surfaces.
    Tse PU; Caplovitz GP; Hsieh PJ
    Vision Res; 2006 Oct; 46(22):3823-30. PubMed ID: 16934310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsaccades uncover the orientation of covert attention.
    Engbert R; Kliegl R
    Vision Res; 2003 Apr; 43(9):1035-45. PubMed ID: 12676246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The orienting of visuospatial attention: an event-related brain potential study.
    Talsma D; Slagter HA; Nieuwenhuis S; Hage J; Kok A
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):117-29. PubMed ID: 15925498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cue-locked lateralized components in a tactile spatial attention task: Evidence for a functional dissociation between ADAN and LSN.
    Gherri E; Gooray E; Forster B
    Psychophysiology; 2016 Apr; 53(4):507-17. PubMed ID: 26695445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directing Voluntary Temporal Attention Increases Fixational Stability.
    Denison RN; Yuval-Greenberg S; Carrasco M
    J Neurosci; 2019 Jan; 39(2):353-363. PubMed ID: 30459223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation.
    Vossen AY; Ross V; Jongen EM; Ruiter RA; Smulders FT
    Psychophysiology; 2016 Feb; 53(2):237-51. PubMed ID: 26524126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disentangling gaze shifts from preparatory ERP effects during spatial attention.
    Kennett S; van Velzen J; Eimer M; Driver J
    Psychophysiology; 2007 Jan; 44(1):69-78. PubMed ID: 17241141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous microsaccades reflect shifts in covert attention.
    Yuval-Greenberg S; Merriam EP; Heeger DJ
    J Neurosci; 2014 Oct; 34(41):13693-700. PubMed ID: 25297096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.