These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages. Shakoor MB; Ali S; Hameed A; Farid M; Hussain S; Yasmeen T; Najeeb U; Bharwana SA; Abbasi GH Ecotoxicol Environ Saf; 2014 Nov; 109():38-47. PubMed ID: 25164201 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape. Ali B; Song WJ; Hu WZ; Luo XN; Gill RA; Wang J; Zhou WJ Ecotoxicol Environ Saf; 2014 Apr; 102():25-33. PubMed ID: 24580818 [TBL] [Abstract][Full Text] [Related]
4. Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Farooq MA; Li L; Ali B; Gill RA; Wang J; Ali S; Gill MB; Zhou W Environ Sci Pollut Res Int; 2015 Jul; 22(14):10699-712. PubMed ID: 25752633 [TBL] [Abstract][Full Text] [Related]
5. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings. Zhou C; Huang M; Ren H; Yu J; Wu J; Ma X Ecotoxicol Environ Saf; 2017 Aug; 142():59-68. PubMed ID: 28388478 [TBL] [Abstract][Full Text] [Related]
6. Nutrient strengthening and lead alleviation in Brassica Napus L. by foliar ZnO and TiO Sehrish AK; Ahmad S; Alomrani SO; Ahmad A; Al-Ghanim KA; Alshehri MA; Tauqeer A; Ali S; Sarker PK Sci Rep; 2024 Aug; 14(1):19437. PubMed ID: 39169199 [TBL] [Abstract][Full Text] [Related]
7. Nano-TiO2 Is Not Phytotoxic As Revealed by the Oilseed Rape Growth and Photosynthetic Apparatus Ultra-Structural Response. Li J; Naeem MS; Wang X; Liu L; Chen C; Ma N; Zhang C PLoS One; 2015; 10(12):e0143885. PubMed ID: 26624621 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ali B; Gill RA; Yang S; Gill MB; Ali S; Rafiq MT; Zhou W Ecotoxicol Environ Saf; 2014 Dec; 110():197-207. PubMed ID: 25255479 [TBL] [Abstract][Full Text] [Related]
9. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Afshan S; Ali S; Bharwana SA; Rizwan M; Farid M; Abbas F; Ibrahim M; Mehmood MA; Abbasi GH Environ Sci Pollut Res Int; 2015 Aug; 22(15):11679-89. PubMed ID: 25850739 [TBL] [Abstract][Full Text] [Related]
10. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Carrier P; Baryla A; Havaux M Planta; 2003 Apr; 216(6):939-50. PubMed ID: 12687361 [TBL] [Abstract][Full Text] [Related]
11. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Yan H; Filardo F; Hu X; Zhao X; Fu D Environ Sci Pollut Res Int; 2016 Feb; 23(4):3758-69. PubMed ID: 26498815 [TBL] [Abstract][Full Text] [Related]
12. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Cojocaru P; Gusiatin ZM; Cretescu I Environ Sci Pollut Res Int; 2016 Jun; 23(11):10693-10701. PubMed ID: 26884243 [TBL] [Abstract][Full Text] [Related]
13. Effects of di-n-butyl phthalate on photosynthetic performance and oxidative damage in different growth stages of wheat in cinnamon soils. Gao M; Guo Z; Dong Y; Song Z Environ Pollut; 2019 Jul; 250():357-365. PubMed ID: 31009929 [TBL] [Abstract][Full Text] [Related]
14. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Baryla A; Carrier P; Franck F; Coulomb C; Sahut C; Havaux M Planta; 2001 Apr; 212(5-6):696-709. PubMed ID: 11346943 [TBL] [Abstract][Full Text] [Related]
15. Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. seedlings to lead and cadmium: Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Xin JP; Zhang Y; Tian RN Ecotoxicol Environ Saf; 2018 Dec; 165():611-621. PubMed ID: 30241089 [TBL] [Abstract][Full Text] [Related]
16. Effect of lead (Pb) on antioxidation system and accumulation ability of Moso bamboo (Phyllostachys pubescens). Bin Zhong ; Chen J; Shafi M; Guo J; Wang Y; Wu J; Ye Z; He L; Liu D Ecotoxicol Environ Saf; 2017 Apr; 138():71-77. PubMed ID: 28012367 [TBL] [Abstract][Full Text] [Related]
17. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Sinha S; Gupta AK Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293 [TBL] [Abstract][Full Text] [Related]
18. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. Li Y; Zhou C; Huang M; Luo J; Hou X; Wu P; Ma X J Plant Res; 2016 Mar; 129(2):251-62. PubMed ID: 26733305 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of lead toxicity in Erica andevalensis as an alternative species for revegetation of contaminated soils. Mingorance MD; Leidi EO; Valdés B; Rossini Oliva S Int J Phytoremediation; 2012 Feb; 14(2):174-85. PubMed ID: 22567703 [TBL] [Abstract][Full Text] [Related]
20. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. Khan M; Daud MK; Basharat A; Khan MJ; Azizullah A; Muhammad N; Muhammad N; Ur Rehman Z; Zhu SJ Environ Sci Pollut Res Int; 2016 May; 23(9):8431-40. PubMed ID: 26782322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]