BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28254951)

  • 1. Examination of the Human Cytochrome P4503A4 Induction Potential of PF-06282999, an Irreversible Myeloperoxidase Inactivator: Integration of Preclinical, In Silico, and Biomarker Methodologies in the Prediction of the Clinical Outcome.
    Dong JQ; Gosset JR; Fahmi OA; Lin Z; Chabot JR; Terra SG; Le V; Chidsey K; Nouri P; Kim A; Buckbinder L; Kalgutkar AS
    Drug Metab Dispos; 2017 May; 45(5):501-511. PubMed ID: 28254951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of human cytochrome P450 3A4 by the irreversible myeloperoxidase inactivator PF-06282999 is mediated by the pregnane X receptor.
    Moscovitz JE; Lin Z; Johnson N; Tu M; Goosen TC; Weng Y; Kalgutkar AS
    Xenobiotica; 2018 Jul; 48(7):647-655. PubMed ID: 28685622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of endogenous 4β-hydroxycholesterol with midazolam as markers for CYP3A4 induction by rifampicin.
    Björkhem-Bergman L; Bäckström T; Nylén H; Rönquist-Nii Y; Bredberg E; Andersson TB; Bertilsson L; Diczfalusy U
    Drug Metab Dispos; 2013 Aug; 41(8):1488-93. PubMed ID: 23674608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes.
    Mao J; Johnson TR; Shen Z; Yamazaki S
    Drug Metab Dispos; 2013 Feb; 41(2):343-52. PubMed ID: 23129213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetics and Disposition of the Thiouracil Derivative PF-06282999, an Orally Bioavailable, Irreversible Inactivator of Myeloperoxidase Enzyme, Across Animals and Humans.
    Dong JQ; Varma MV; Wolford A; Ryder T; Di L; Feng B; Terra SG; Sagawa K; Kalgutkar AS
    Drug Metab Dispos; 2016 Feb; 44(2):209-19. PubMed ID: 26608081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999): A Highly Selective Mechanism-Based Myeloperoxidase Inhibitor for the Treatment of Cardiovascular Diseases.
    Ruggeri RB; Buckbinder L; Bagley SW; Carpino PA; Conn EL; Dowling MS; Fernando DP; Jiao W; Kung DW; Orr ST; Qi Y; Rocke BN; Smith A; Warmus JS; Zhang Y; Bowles D; Widlicka DW; Eng H; Ryder T; Sharma R; Wolford A; Okerberg C; Walters K; Maurer TS; Zhang Y; Bonin PD; Spath SN; Xing G; Hepworth D; Ahn K; Kalgutkar AS
    J Med Chem; 2015 Nov; 58(21):8513-28. PubMed ID: 26509551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent inhibition and induction of human cytochrome P4503A4/5 by an oral IAP antagonist, LCL161, in vitro and in vivo in healthy subjects.
    Dhuria S; Einolf H; Mangold J; Sen S; Gu H; Wang L; Cameron S
    J Clin Pharmacol; 2013 Jun; 53(6):642-53. PubMed ID: 23585187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo CYP3A64 induction and inhibition studies in rhesus monkeys: a preclinical approach for CYP3A-mediated drug interaction studies.
    Prueksaritanont T; Kuo Y; Tang C; Li C; Qiu Y; Lu B; Strong-Basalyga K; Richards K; Carr B; Lin JH
    Drug Metab Dispos; 2006 Sep; 34(9):1546-55. PubMed ID: 16782766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A clinical study to assess CYP1A2 and CYP3A4 induction by AZD7325, a selective GABA(A) receptor modulator - an in vitro and in vivo comparison.
    Zhou D; Sunzel M; Ribadeneira MD; Smith MA; Desai D; Lin J; Grimm SW
    Br J Clin Pharmacol; 2012 Jul; 74(1):98-108. PubMed ID: 22122233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of calibration curve-based approaches to predict clinical inducers and noninducers of CYP3A4 with plated human hepatocytes.
    Zhang JG; Ho T; Callendrello AL; Clark RJ; Santone EA; Kinsman S; Xiao D; Fox LG; Einolf HJ; Stresser DM
    Drug Metab Dispos; 2014 Sep; 42(9):1379-91. PubMed ID: 24924386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Physiologically Based Pharmacokinetic (PBPK) Modeling of Parent and Active Metabolites to Investigate Complex CYP3A4 Drug-Drug Interaction Potential: A Case Example of Midostaurin.
    Gu H; Dutreix C; Rebello S; Ouatas T; Wang L; Chun DY; Einolf HJ; He H
    Drug Metab Dispos; 2018 Feb; 46(2):109-121. PubMed ID: 29117990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug Interactions for Low-Dose Inhaled Nemiralisib: A Case Study Integrating Modeling, In Vitro, and Clinical Investigations.
    Patel A; Wilson R; Harrell AW; Taskar KS; Taylor M; Tracey H; Riddell K; Georgiou A; Cahn AP; Marotti M; Hessel EM
    Drug Metab Dispos; 2020 Apr; 48(4):307-316. PubMed ID: 32009006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for CYP3A Induction Risk Assessment from Preclinical Signal to Human: a Case Example of a Late-Stage Discovery Compound.
    Mao J; Fan P; Wong S; Wang J; Ismaili MHA; Dean B; Hop CECA; Wright M; Chen Y
    Pharm Res; 2017 Nov; 34(11):2403-2414. PubMed ID: 28815392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of clinical drug-drug interactions from hepatocyte CYP3A4 induction data and its potential utility in trial designs.
    Xu Y; Zhou Y; Hayashi M; Shou M; Skiles GL
    Drug Metab Dispos; 2011 Jul; 39(7):1139-48. PubMed ID: 21441468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of cynomolgus monkey pregnane X receptor, primary hepatocyte, and in vivo pharmacokinetic changes in predicting human CYP3A4 induction.
    Kim S; Dinchuk JE; Anthony MN; Orcutt T; Zoeckler ME; Sauer MB; Mosure KW; Vuppugalla R; Grace JE; Simmermacher J; Dulac HA; Pizzano J; Sinz M
    Drug Metab Dispos; 2010 Jan; 38(1):16-24. PubMed ID: 19833845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of 4β-hydroxycholesterol : cholesterol and 6β-hydroxycortisol : cortisol as markers of CYP3A4 induction.
    Mårde Arrhén Y; Nylén H; Lövgren-Sandblom A; Kanebratt KP; Wide K; Diczfalusy U
    Br J Clin Pharmacol; 2013 Jun; 75(6):1536-40. PubMed ID: 23116409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4β-Hydroxycholesterol as an endogenous biomarker of CYP3A activity in cynomolgus monkeys.
    Li K; Zhao S; Zhang L; Wu X; Shu P; Wang Y; Feng H; Gu Z; Han Hsu H
    Drug Metab Dispos; 2014 May; 42(5):839-43. PubMed ID: 24595680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of CYP3A induction by PF-05251749 in early clinical development: comparison of linear slope physiologically based pharmacokinetic prediction and biomarker response.
    Lin J; Gaudreault F; Johnson N; Lin Z; Nouri P; Goosen TC; Sawant-Basak A
    Clin Transl Sci; 2022 Sep; 15(9):2184-2194. PubMed ID: 35730131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study for detecting CYP3A induction by CYP3A probe drugs and endogenous markers in cynomolgus monkeys.
    Tahara H; Watanabe M; Hasegawa M
    Biopharm Drug Dispos; 2019 Feb; 40(2):81-93. PubMed ID: 30724384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential metabolism of AMG 487, a novel CXCR3 antagonist, results in formation of quinone reactive metabolites that covalently modify CYP3A4 Cys239 and cause time-dependent inhibition of the enzyme.
    Henne KR; Tran TB; VandenBrink BM; Rock DA; Aidasani DK; Subramanian R; Mason AK; Stresser DM; Teffera Y; Wong SG; Johnson MG; Chen X; Tonn GR; Wong BK
    Drug Metab Dispos; 2012 Jul; 40(7):1429-40. PubMed ID: 22517972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.