BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 28255348)

  • 21. Stimuli-responsive charge-reversal nano drug delivery system: The promising targeted carriers for tumor therapy.
    Fang Z; Pan S; Gao P; Sheng H; Li L; Shi L; Zhang Y; Cai X
    Int J Pharm; 2020 Feb; 575():118841. PubMed ID: 31812795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex effects of tumor microenvironment on the tumor disposition of carrier-mediated agents.
    Lucas AT; Price LS; Schorzman A; Zamboni WC
    Nanomedicine (Lond); 2017 Aug; 12(16):2021-2042. PubMed ID: 28745129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics.
    Mi P
    Theranostics; 2020; 10(10):4557-4588. PubMed ID: 32292515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting.
    Faal Maleki M; Jafari A; Mirhadi E; Askarizadeh A; Golichenari B; Hadizadeh F; Jalilzadeh Moghimi SM; Aryan R; Mashreghi M; Jaafari MR
    Int J Pharm; 2019 Dec; 572():118716. PubMed ID: 31705978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multistage Adaptive Nanoparticle Overcomes Biological Barriers for Effective Chemotherapy.
    Wang Y; Zhang Z; Zheng C; Zhao X; Zheng Y; Liu Q; Liu Y; Shi L
    Small; 2021 Aug; 17(31):e2100578. PubMed ID: 34190401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy.
    Saravanakumar K; Hu X; Ali DM; Wang MH
    Curr Pharm Des; 2019; 25(24):2609-2625. PubMed ID: 31603055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand-Modified Erythrocyte Membrane-Cloaked Metal-Organic Framework Nanoparticles for Targeted Antitumor Therapy.
    Lin Y; Zhong Y; Chen Y; Li L; Chen G; Zhang J; Li P; Zhou C; Sun Y; Ma Y; Xie Z; Liao Q
    Mol Pharm; 2020 Sep; 17(9):3328-3341. PubMed ID: 32804508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges.
    Li W; Little N; Park J; Foster CA; Chen J; Lu J
    Mol Pharm; 2021 Aug; 18(8):2889-2905. PubMed ID: 34260250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MMP-Responsive 'Smart' Drug Delivery and Tumor Targeting.
    Yao Q; Kou L; Tu Y; Zhu L
    Trends Pharmacol Sci; 2018 Aug; 39(8):766-781. PubMed ID: 30032745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel carbon-nanodots-based theranostic nano-drug delivery system for mitochondria-targeted imaging and glutathione-activated delivering camptothecin.
    Gong X; Wang Z; Zhang L; Dong W; Wang R; Liu Y; Song S; Hu Q; Du F; Shuang S; Dong C
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112712. PubMed ID: 35921692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticles for Cancer Targeting: Current and Future Directions.
    Swain S; Sahu PK; Beg S; Babu SM
    Curr Drug Deliv; 2016; 13(8):1290-1302. PubMed ID: 27411485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Charge-Switchable nanoparticles to enhance tumor penetration and accumulation.
    Souri M; Golzaryan A; Soltani M
    Eur J Pharm Biopharm; 2024 Jun; 199():114310. PubMed ID: 38705311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles.
    Ernsting MJ; Murakami M; Roy A; Li SD
    J Control Release; 2013 Dec; 172(3):782-94. PubMed ID: 24075927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo targeted delivery of nanoparticles for theranosis.
    Koo H; Huh MS; Sun IC; Yuk SH; Choi K; Kim K; Kwon IC
    Acc Chem Res; 2011 Oct; 44(10):1018-28. PubMed ID: 21851104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment.
    Zhang ZT; Huang-Fu MY; Xu WH; Han M
    Eur J Pharm Biopharm; 2019 Apr; 137():122-130. PubMed ID: 30776412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tumour-specific uptake of anti-cancer drugs: the future is here.
    Caraglia M; Marra M; Misso G; Lamberti M; Salzano G; De Rosa G; Abbruzzese A
    Curr Drug Metab; 2012 Jan; 13(1):4-21. PubMed ID: 22292808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies of overcoming the physiological barriers for tumor-targeted nano-sized drug delivery systems.
    Pi Y; Zhou J; Wang J; Zhong J; Zhang L; Wang Y; Yu L; Yan Z
    Curr Pharm Des; 2015; 21(42):6236-45. PubMed ID: 26503142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression.
    Lei Y; Hamada Y; Li J; Cong L; Wang N; Li Y; Zheng W; Jiang X
    J Control Release; 2016 Jun; 232():131-42. PubMed ID: 27046157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.