These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28255572)

  • 1. Label-Free Single-Molecule Imaging with Numerical-Aperture-Shaped Interferometric Scattering Microscopy.
    Cole D; Young G; Weigel A; Sebesta A; Kukura P
    ACS Photonics; 2017 Feb; 4(2):211-216. PubMed ID: 28255572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferometric Scattering Microscopy.
    Young G; Kukura P
    Annu Rev Phys Chem; 2019 Jun; 70():301-322. PubMed ID: 30978297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging.
    Ortega Arroyo J; Cole D; Kukura P
    Nat Protoc; 2016 Apr; 11(4):617-33. PubMed ID: 26938114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interferometric three-dimensional single molecule localization microscopy using a single high-numerical-aperture objective.
    Zhang P; Goodwin PM; Werner JH
    Appl Opt; 2014 Nov; 53(31):7415-21. PubMed ID: 25402907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging.
    Lee YU; Li S; Wisna GBM; Zhao J; Zeng Y; Tao AR; Liu Z
    Nat Commun; 2022 Nov; 13(1):6631. PubMed ID: 36333375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aperture scanning Fourier ptychographic microscopy.
    Ou X; Chung J; Horstmeyer R; Yang C
    Biomed Opt Express; 2016 Aug; 7(8):3140-50. PubMed ID: 27570705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant scattering enhanced interferometric scattering microscopy.
    Shi Z; Huang J; Huang X; Huang Y; Wu L; Li Q
    Nanoscale; 2020 Apr; 12(14):7969-7975. PubMed ID: 32232255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the optimum form of an aperture for a confinement of the optically excited electric near field.
    Bortchagovsky E; Colas des Francs G; Naber A; Fischer UC
    J Microsc; 2008 Feb; 229(Pt 2):223-7. PubMed ID: 18304076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free, mass-sensitive single-molecule imaging using interferometric scattering microscopy.
    Hundt N
    Essays Biochem; 2021 Apr; 65(1):81-91. PubMed ID: 33296454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the full scattering matrix using coherent Fourier scatterometry.
    Kumar N; Cisotto L; Roy S; Ramanandan GK; Pereira SF; Paul Urbach H
    Appl Opt; 2016 Jun; 55(16):4408-13. PubMed ID: 27411195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy.
    Davis BJ; Schlachter SC; Marks DL; Ralston TS; Boppart SA; Carney PS
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2527-42. PubMed ID: 17767224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field-based dynamic light scattering microscopy: theory and numerical analysis.
    Joo C; de Boer JF
    Appl Opt; 2013 Nov; 52(31):7618-28. PubMed ID: 24216666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superresolution beyond the diffraction limit using phase spatial light modulator between incoherently illuminated objects and the entrance of an imaging system.
    Rai MR; Vijayakumar A; Rosen J
    Opt Lett; 2019 Apr; 44(7):1572-1575. PubMed ID: 30933093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferometric imaging with ring-shaped apertures.
    Zhao Y; Popescu G
    Opt Express; 2022 Dec; 30(26):47280-47286. PubMed ID: 36558659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial profiling of interferometric scattering enables an accurate determination of nanoparticle size.
    Žambochová K; Lee IB; Park JS; Hong SC; Cho M
    Opt Express; 2023 Mar; 31(6):10101-10113. PubMed ID: 37157566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free, all-optical detection, imaging, and tracking of a single protein.
    Ortega Arroyo J; Andrecka J; Spillane KM; Billington N; Takagi Y; Sellers JR; Kukura P
    Nano Lett; 2014; 14(4):2065-70. PubMed ID: 24597479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation.
    Pandey V; Gupta S; Elangovan R
    Methods Appl Fluoresc; 2017 Dec; 6(1):015007. PubMed ID: 29076809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical microscopy using a single-molecule light source.
    Michaelis J; Hettich C; Mlynek J; Sandoghdar V
    Nature; 2000 May; 405(6784):325-8. PubMed ID: 10830956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Light Scattering Measurements for Soft Materials on Solid Substrates: Employing Evanescent-wave Illumination and Dark-field Collection with a High Numerical Aperture Microscope Objective.
    Morisaku T; Sunada M; Miyazaki A; Sakai T; Matsuo K; Yui H
    Anal Sci; 2020 Oct; 36(10):1211-1215. PubMed ID: 32418932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent confocal light scattering spectroscopic microscopy evaluates cancer progression and aggressiveness in live cells and tissue.
    Pleskow DK; Zhang L; Turzhitsky V; Coughlan MF; Khan U; Zhang X; Sheil CJ; Glyavina M; Chen L; Shinagare S; Zakharov YN; Vitkin E; Itzkan I; Perelman LT; Qiu L
    ACS Photonics; 2021 Jul; 8(7):2050-2059. PubMed ID: 34485615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.