These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 28255832)

  • 1. Analysing Algorithms and Data Sources for the Tissue-Specific Reconstruction of Liver Healthy and Cancer Cells.
    Ferreira J; Correia S; Rocha M
    Interdiscip Sci; 2017 Mar; 9(1):36-45. PubMed ID: 28255832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The FASTCORE Family: For the Fast Reconstruction of Compact Context-Specific Metabolic Networks Models.
    Pacheco MP; Sauter T
    Methods Mol Biol; 2018; 1716():101-110. PubMed ID: 29222750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatocellular carcinoma: genome-scale metabolic models for hepatocellular carcinoma.
    Pinyol R; Llovet JM
    Nat Rev Gastroenterol Hepatol; 2014 Jun; 11(6):336-7. PubMed ID: 24840704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automation on the generation of genome-scale metabolic models.
    Reyes R; Gamermann D; Montagud A; Fuente D; Triana J; Urchueguía JF; de Córdoba PF
    J Comput Biol; 2012 Dec; 19(12):1295-306. PubMed ID: 23210477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics.
    Guillouzo A; Corlu A; Aninat C; Glaise D; Morel F; Guguen-Guillouzo C
    Chem Biol Interact; 2007 May; 168(1):66-73. PubMed ID: 17241619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast reconstruction of compact context-specific metabolic network models.
    Vlassis N; Pacheco MP; Sauter T
    PLoS Comput Biol; 2014 Jan; 10(1):e1003424. PubMed ID: 24453953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HEPATOKIN1 is a biochemistry-based model of liver metabolism for applications in medicine and pharmacology.
    Berndt N; Bulik S; Wallach I; Wünsch T; König M; Stockmann M; Meierhofer D; Holzhütter HG
    Nat Commun; 2018 Jun; 9(1):2386. PubMed ID: 29921957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism.
    Jerby L; Shlomi T; Ruppin E
    Mol Syst Biol; 2010 Sep; 6():401. PubMed ID: 20823844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE.
    Wang Y; Eddy JA; Price ND
    BMC Syst Biol; 2012 Dec; 6():153. PubMed ID: 23234303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing methods for metabolic network analysis and an application to metabolic engineering.
    Tomar N; De RK
    Gene; 2013 May; 521(1):1-14. PubMed ID: 23537990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.
    Aurich MK; Thiele I
    Methods Mol Biol; 2016; 1386():253-81. PubMed ID: 26677187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic assignment of thermodynamic constraints in metabolic network models.
    Kümmel A; Panke S; Heinemann M
    BMC Bioinformatics; 2006 Nov; 7():512. PubMed ID: 17123434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages.
    Ramesh V; Ganesan K
    Gene; 2016 Aug; 588(1):19-29. PubMed ID: 27107678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network stratification analysis for identifying function-specific network layers.
    Zhang C; Wang J; Zhang C; Liu J; Xu D; Chen L
    Mol Biosyst; 2016 Apr; 12(4):1232-40. PubMed ID: 26879865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Systematic Evaluation of Methods for Tailoring Genome-Scale Metabolic Models.
    Opdam S; Richelle A; Kellman B; Li S; Zielinski DC; Lewis NE
    Cell Syst; 2017 Mar; 4(3):318-329.e6. PubMed ID: 28215528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IDENTIFYING CANCER SPECIFIC METABOLIC SIGNATURES USING CONSTRAINT-BASED MODELS.
    Schultz A; Mehta S; Hu CW; Hoff FW; Horton TM; Kornblau SM; Qutub AA
    Pac Symp Biocomput; 2017; 22():485-496. PubMed ID: 27897000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of constraint-based system-level models of microbial metabolism.
    Navid A
    Methods Mol Biol; 2012; 881():531-49. PubMed ID: 22639225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.
    Zhao J; Geng C; Tao L; Zhang D; Jiang Y; Tang K; Zhu R; Yu H; Zhang W; He F; Li Y; Cao Z
    J Proteome Res; 2010 Apr; 9(4):1648-58. PubMed ID: 20136149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HGF, MET, and matrix-related proteases in hepatocellular carcinoma, fibrolamellar variant, cirrhotic and normal liver.
    Schoedel KE; Tyner VZ; Kim TH; Michalopoulos GK; Mars WM
    Mod Pathol; 2003 Jan; 16(1):14-21. PubMed ID: 12527708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.
    Wiśniewski JR; Vildhede A; Norén A; Artursson P
    J Proteomics; 2016 Mar; 136():234-47. PubMed ID: 26825538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.