BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

865 related articles for article (PubMed ID: 28256131)

  • 1. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function.
    Burkhart BJ; Schwalen CJ; Mann G; Naismith JH; Mitchell DA
    Chem Rev; 2017 Apr; 117(8):5389-5456. PubMed ID: 28256131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Basis for Ribosomal Peptide Backbone Modifications.
    Dong SH; Liu A; Mahanta N; Mitchell DA; Nair SK
    ACS Cent Sci; 2019 May; 5(5):842-851. PubMed ID: 31139720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroamidine Formation in Bottromycins Is Catalyzed by a Divergent YcaO Enzyme.
    Franz L; Adam S; Santos-Aberturas J; Truman AW; Koehnke J
    J Am Chem Soc; 2017 Dec; 139(50):18158-18161. PubMed ID: 29206037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Biosynthesis of Peptides Containing Exotic Azoline Analogues.
    Goto Y; Suga H
    Chembiochem; 2020 Jan; 21(1-2):84-87. PubMed ID: 31523895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Heterotrimeric Dehydrogenase Complex Functions with 2 Distinct YcaO Proteins to Install 5 Azole Heterocycles into 35-Membered Sulfomycin Thiopeptides.
    Du Y; Qiu Y; Meng X; Feng J; Tao J; Liu W
    J Am Chem Soc; 2020 May; 142(18):8454-8463. PubMed ID: 32293883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis.
    Zheng Y; Nair SK
    Nat Chem Biol; 2023 Jan; 19(1):111-119. PubMed ID: 36280794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Biosynthetic Studies of Bottromycin Expand the Enzymatic Capabilities of the YcaO Superfamily.
    Schwalen CJ; Hudson GA; Kosol S; Mahanta N; Challis GL; Mitchell DA
    J Am Chem Soc; 2017 Dec; 139(50):18154-18157. PubMed ID: 29200283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-dependent post-translational modifications guide the biosynthesis of a new class of hypermodified peptides.
    Pei ZF; Zhu L; Nair SK
    Nat Commun; 2023 Nov; 14(1):7734. PubMed ID: 38007494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations.
    Dunbar KL; Melby JO; Mitchell DA
    Nat Chem Biol; 2012 Apr; 8(6):569-75. PubMed ID: 22522320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool.
    Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW
    Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrocyclization and Backbone Modification in RiPP Biosynthesis.
    Lee H; van der Donk WA
    Annu Rev Biochem; 2022 Jun; 91():269-294. PubMed ID: 35303785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products.
    Fernandez-Cantos MV; Garcia-Morena D; Yi Y; Liang L; Gómez-Vázquez E; Kuipers OP
    Front Microbiol; 2023; 14():1219272. PubMed ID: 37469430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters.
    Malit JJL; Wu C; Liu LL; Qian PY
    Front Microbiol; 2021; 12():635389. PubMed ID: 33995295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature.
    Russell AH; Vior NM; Hems ES; Lacret R; Truman AW
    Chem Sci; 2021 Sep; 12(35):11769-11778. PubMed ID: 34659714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic reconstitution of ribosomal peptide backbone thioamidation.
    Mahanta N; Liu A; Dong S; Nair SK; Mitchell DA
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3030-3035. PubMed ID: 29507203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.