These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

869 related articles for article (PubMed ID: 28256131)

  • 21. Biosynthesis of Translation Inhibitor Klebsazolicin Proceeds through Heterocyclization and N-Terminal Amidine Formation Catalyzed by a Single YcaO Enzyme.
    Travin DY; Metelev M; Serebryakova M; Komarova ES; Osterman IA; Ghilarov D; Severinov K
    J Am Chem Soc; 2018 Apr; 140(16):5625-5633. PubMed ID: 29601195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Posttranslational chemical installation of azoles into translated peptides.
    Tsutsumi H; Kuroda T; Kimura H; Goto Y; Suga H
    Nat Commun; 2021 Jan; 12(1):696. PubMed ID: 33514734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs).
    Cao L; Do T; Link AJ
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33928382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthetic Studies of Phomopsins Unveil Posttranslational Installation of Dehydroamino Acids by UstYa Family Proteins.
    Sogahata K; Ozaki T; Igarashi Y; Naganuma Y; Liu C; Minami A; Oikawa H
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25729-25734. PubMed ID: 34608734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis.
    Chekan JR; Ongpipattanakul C; Nair SK
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24049-24055. PubMed ID: 31719203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era.
    Hetrick KJ; van der Donk WA
    Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lasso peptides: structure, function, biosynthesis, and engineering.
    Maksimov MO; Pan SJ; James Link A
    Nat Prod Rep; 2012 Sep; 29(9):996-1006. PubMed ID: 22833149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revealing nature's synthetic potential through the study of ribosomal natural product biosynthesis.
    Dunbar KL; Mitchell DA
    ACS Chem Biol; 2013 Mar; 8(3):473-87. PubMed ID: 23286465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and mechanism of lanthipeptide biosynthetic enzymes.
    van der Donk WA; Nair SK
    Curr Opin Struct Biol; 2014 Dec; 29():58-66. PubMed ID: 25460269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prospecting genomes for lasso peptides.
    Maksimov MO; Link AJ
    J Ind Microbiol Biotechnol; 2014 Feb; 41(2):333-44. PubMed ID: 24142336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of protein-protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides.
    Sikandar A; Koehnke J
    Nat Prod Rep; 2019 Nov; 36(11):1576-1588. PubMed ID: 30920567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Occurrence, function, and biosynthesis of mycofactocin.
    Ayikpoe R; Govindarajan V; Latham JA
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):2903-2912. PubMed ID: 30778644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Omics-based strategies to discover novel classes of RiPP natural products.
    Kloosterman AM; Medema MH; van Wezel GP
    Curr Opin Biotechnol; 2021 Jun; 69():60-67. PubMed ID: 33383297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-pot synthesis of azoline-containing peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase.
    Goto Y; Ito Y; Kato Y; Tsunoda S; Suga H
    Chem Biol; 2014 Jun; 21(6):766-74. PubMed ID: 24856821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Histidine Functionalization and Its Timing in the Biosynthesis of Ribosomally Synthesized and Posttranslationally Modified Thioamitides.
    Hu L; Qiao Y; Liu J; Zheng C; Wang X; Sun P; Gu Y; Liu W
    J Am Chem Soc; 2022 Mar; 144(10):4431-4438. PubMed ID: 35230829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural investigation of ribosomally synthesized natural products by hypothetical structure enumeration and evaluation using tandem MS.
    Zhang Q; Ortega M; Shi Y; Wang H; Melby JO; Tang W; Mitchell DA; van der Donk WA
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12031-6. PubMed ID: 25092299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radical Approach to Enzymatic β-Thioether Bond Formation.
    Caruso A; Bushin LB; Clark KA; Martinie RJ; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jan; 141(2):990-997. PubMed ID: 30521328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.