These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28256599)

  • 41. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrawideband terahertz absorber with a graphene-loaded dielectric hemi-ellipsoid.
    Zhong R; Yang L; Liang Z; Wu Z; Wang Y; Ma A; Fang Z; Liu S
    Opt Express; 2020 Sep; 28(20):28773-28781. PubMed ID: 33114788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polarization-independent and high-efficiency broadband optical absorber in visible light based on nanostructured germanium arrays.
    Zhao J; Yu X; Yang X; Th Tee CA; Yuan W; Yu Y
    Opt Lett; 2019 Feb; 44(4):963-966. PubMed ID: 30768031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-Assembly of Carbon Black/AAO Templates on Nanoporous Si for Broadband Infrared Absorption.
    Li H; Wu L; Zhang H; Dai W; Hao J; Wu H; Ren F; Liu C
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4081-4087. PubMed ID: 31875671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application.
    Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I
    Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultra-wideband terahertz metamaterial absorber based on Snowflake Koch Fractal dielectric loaded graphene.
    Nourbakhsh M; Zareian-Jahromi E; Basiri R
    Opt Express; 2019 Nov; 27(23):32958-32969. PubMed ID: 31878371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.
    Boriskina SV; Tsurimaki Y
    J Phys Condens Matter; 2018 Jun; 30(22):224003. PubMed ID: 29667599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime.
    Shu S; Li Z; Li YY
    Opt Express; 2013 Oct; 21(21):25307-15. PubMed ID: 24150371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile Film-Nanoctahedron Assembly Route to Plasmonic Metamaterial Absorbers at Visible Frequencies.
    Zhang H; Guan C; Luo J; Yuan Y; Song N; Zhang Y; Fang J; Liu H
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20241-20248. PubMed ID: 31083897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An extremely wideband and lightweight metamaterial absorber.
    Shen Y; Pei Z; Pang Y; Wang J; Zhang A; Qu S
    J Appl Phys; 2015 Jun; 117(22):224503. PubMed ID: 26130845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. All-dielectric resonant cavity-enabled metals with broadband optical transparency.
    Liu Z; Zhang H; Liu X; Pan P; Liu Y; Tang L; Liu G
    Nanotechnology; 2017 Jun; 28(23):235202. PubMed ID: 28516899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broadband and Spectrally Selective Photothermal Conversion through Nanocluster Assembly of Disordered Plasmonic Metasurfaces.
    Chen JA; Qin Y; Niu Y; Mao P; Song F; Palmer RE; Wang G; Zhang S; Han M
    Nano Lett; 2023 Aug; 23(15):7236-7243. PubMed ID: 37326318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance.
    Jiang X; Wang T; Xiao S; Yan X; Cheng L
    Opt Express; 2017 Oct; 25(22):27028-27036. PubMed ID: 29092184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers.
    Cai Y; Xu KD; Feng N; Guo R; Lin H; Zhu J
    Opt Express; 2019 Feb; 27(3):3101-3112. PubMed ID: 30732336
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Angle-insensitive narrowband optical absorption based on high-Q localized resonance.
    Zhu X; Fu J; Ding F; Jin Y; Wu A
    Sci Rep; 2018 Oct; 8(1):15240. PubMed ID: 30323239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultra-Broadband Directional Scattering by Colloidally Lithographed High-Index Mie Resonant Oligomers and Their Energy-Harvesting Applications.
    Zhang Y; Xu Y; Chen S; Lu H; Chen K; Cao Y; Miroshnichenko AE; Gu M; Li X
    ACS Appl Mater Interfaces; 2018 May; 10(19):16776-16782. PubMed ID: 29682955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector.
    Pan Y; Tagliabue G; Eghlidi H; Höller C; Dröscher S; Hong G; Poulikakos D
    Sci Rep; 2016 Nov; 6():37564. PubMed ID: 27874075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.