These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 28256806)
1. Microfluidic Synthesis of Nanohybrids. Wang J; Song Y Small; 2017 May; 13(18):. PubMed ID: 28256806 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. Shen J; Shafiq M; Ma M; Chen H Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32560284 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth. Lignos I; Maceiczyk R; deMello AJ Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055 [TBL] [Abstract][Full Text] [Related]
4. A general strategy for nanohybrids synthesis via coupled competitive reactions controlled in a hybrid process. Wang R; Yang W; Song Y; Shen X; Wang J; Zhong X; Li S; Song Y Sci Rep; 2015 Mar; 5():9189. PubMed ID: 25818342 [TBL] [Abstract][Full Text] [Related]
5. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Krishna KS; Li Y; Li S; Kumar CS Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1470-95. PubMed ID: 23726944 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic nanomaterials: From synthesis to biomedical applications. Illath K; Kar S; Gupta P; Shinde A; Wankhar S; Tseng FG; Lim KT; Nagai M; Santra TS Biomaterials; 2022 Jan; 280():121247. PubMed ID: 34801251 [TBL] [Abstract][Full Text] [Related]
7. Biomaterials Meet Microfluidics: From Synthesis Technologies to Biological Applications. Ma J; Wang Y; Liu J Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400445 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic Generation of Nanomaterials for Biomedical Applications. Zhao X; Bian F; Sun L; Cai L; Li L; Zhao Y Small; 2020 Mar; 16(9):e1901943. PubMed ID: 31259464 [TBL] [Abstract][Full Text] [Related]
9. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance. Zhang W; Zhu X; Chen X; Zhou Y; Tang Y; Ding L; Wu P Nanoscale; 2016 May; 8(18):9828-36. PubMed ID: 27119205 [TBL] [Abstract][Full Text] [Related]
10. MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Zhang H; Liu X; Wu Y; Guan C; Cheetham AK; Wang J Chem Commun (Camb); 2018 May; 54(42):5268-5288. PubMed ID: 29582028 [TBL] [Abstract][Full Text] [Related]
11. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications - a review. Ma J; Lee SM; Yi C; Li CW Lab Chip; 2017 Jan; 17(2):209-226. PubMed ID: 27991629 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic synthesis of nanomaterials for biomedical applications. Huang Y; Liu C; Feng Q; Sun J Nanoscale Horiz; 2023 Nov; 8(12):1610-1627. PubMed ID: 37723984 [TBL] [Abstract][Full Text] [Related]
14. Direct synthesis and integration of functional nanostructures in microfluidic devices. Kim J; Li Z; Park I Lab Chip; 2011 Jun; 11(11):1946-51. PubMed ID: 21499615 [TBL] [Abstract][Full Text] [Related]
15. Interweaving spins with their environment: novel inorganic nanohybrids with controllable magnetic properties. Cervetti C; Heintze E; Bogani L Dalton Trans; 2014 Mar; 43(11):4220-32. PubMed ID: 24514949 [TBL] [Abstract][Full Text] [Related]
16. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Guo S; Wang E Acc Chem Res; 2011 Jul; 44(7):491-500. PubMed ID: 21612197 [TBL] [Abstract][Full Text] [Related]