These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle. He Y; Jiang C; Chen B; Li JJ; Zhu KD Opt Lett; 2012 Jul; 37(14):2943-5. PubMed ID: 22825186 [TBL] [Abstract][Full Text] [Related]
3. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Yamaguchi M; Asano T; Noda S Opt Express; 2008 Oct; 16(22):18067-81. PubMed ID: 18958086 [TBL] [Abstract][Full Text] [Related]
4. Photonic nanowires: from subwavelength waveguides to optical sensors. Guo X; Ying Y; Tong L Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258 [TBL] [Abstract][Full Text] [Related]
5. Large Purcell enhancement with efficient one-dimensional collection via coupled nanowire-nanorod system. Duan X; Ren J; Zhang F; Hao H; Lu G; Gong Q; Gu Y Nanotechnology; 2018 Jan; 29(4):045203. PubMed ID: 29144283 [TBL] [Abstract][Full Text] [Related]
6. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363 [TBL] [Abstract][Full Text] [Related]
7. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity. Su SW; Lu ZK; Gou SC; Liao WT Sci Rep; 2016 Oct; 6():35402. PubMed ID: 27748413 [TBL] [Abstract][Full Text] [Related]
9. Large and well-defined Rabi splitting in a semiconductor nanogap cavity. Uemoto M; Ajiki H Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717 [TBL] [Abstract][Full Text] [Related]
10. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system. Zhang F; Ren J; Duan X; Chen Z; Gong Q; Gu Y J Phys Condens Matter; 2018 Aug; 30(30):305302. PubMed ID: 29897349 [TBL] [Abstract][Full Text] [Related]
11. A quantum phase gate capable of effectively collecting photons based on a gap plasmon structure. Zhang Q; Hao H; Ren J; Zhang F; Gong Q; Gu Y Nanoscale; 2020 May; 12(18):10082-10089. PubMed ID: 32347868 [TBL] [Abstract][Full Text] [Related]
13. Cavity QED with semiconductor nanocrystals. Le Thomas N; Woggon U; Schöps O; Artemyev MV; Kazes M; Banin U Nano Lett; 2006 Mar; 6(3):557-61. PubMed ID: 16522062 [TBL] [Abstract][Full Text] [Related]
14. Collective strong coupling in a plasmonic nanocavity. Varguet H; Díaz-Valles AA; Guérin S; Jauslin HR; Colas des Francs G J Chem Phys; 2021 Feb; 154(8):084303. PubMed ID: 33639753 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Strong Transversal s(TE) Exciton-Polaritons in C Despoja V; Marušić L Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805945 [TBL] [Abstract][Full Text] [Related]
16. Microscopic theory of exciton-polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions. Chuang YT; Hsu LY J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38501476 [TBL] [Abstract][Full Text] [Related]
17. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes. Qian C; Wu S; Song F; Peng K; Xie X; Yang J; Xiao S; Steer MJ; Thayne IG; Tang C; Zuo Z; Jin K; Gu C; Xu X Phys Rev Lett; 2018 May; 120(21):213901. PubMed ID: 29883144 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous emission of matter waves from a tunable open quantum system. Krinner L; Stewart M; Pazmiño A; Kwon J; Schneble D Nature; 2018 Jul; 559(7715):589-592. PubMed ID: 30046077 [TBL] [Abstract][Full Text] [Related]
19. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires. Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986 [TBL] [Abstract][Full Text] [Related]
20. Dielectric bow-tie nanocavity. Lu Q; Shu FJ; Zou CL Opt Lett; 2013 Dec; 38(24):5311-4. PubMed ID: 24322245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]