These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28256881)

  • 1. Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection.
    Ren J; Gu Y; Zhao D; Zhang F; Zhang T; Gong Q
    Phys Rev Lett; 2017 Feb; 118(7):073604. PubMed ID: 28256881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.
    He Y; Jiang C; Chen B; Li JJ; Zhu KD
    Opt Lett; 2012 Jul; 37(14):2943-5. PubMed ID: 22825186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Opt Express; 2008 Oct; 16(22):18067-81. PubMed ID: 18958086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Purcell enhancement with efficient one-dimensional collection via coupled nanowire-nanorod system.
    Duan X; Ren J; Zhang F; Hao H; Lu G; Gong Q; Gu Y
    Nanotechnology; 2018 Jan; 29(4):045203. PubMed ID: 29144283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity.
    Su SW; Lu ZK; Gou SC; Liao WT
    Sci Rep; 2016 Oct; 6():35402. PubMed ID: 27748413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions.
    Qin J; Chen YH; Zhang Z; Zhang Y; Blaikie RJ; Ding B; Qiu M
    Phys Rev Lett; 2020 Feb; 124(6):063902. PubMed ID: 32109119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.
    Zhang F; Ren J; Duan X; Chen Z; Gong Q; Gu Y
    J Phys Condens Matter; 2018 Aug; 30(30):305302. PubMed ID: 29897349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantum phase gate capable of effectively collecting photons based on a gap plasmon structure.
    Zhang Q; Hao H; Ren J; Zhang F; Gong Q; Gu Y
    Nanoscale; 2020 May; 12(18):10082-10089. PubMed ID: 32347868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity QED with semiconductor nanocrystals.
    Le Thomas N; Woggon U; Schöps O; Artemyev MV; Kazes M; Banin U
    Nano Lett; 2006 Mar; 6(3):557-61. PubMed ID: 16522062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective strong coupling in a plasmonic nanocavity.
    Varguet H; Díaz-Valles AA; Guérin S; Jauslin HR; Colas des Francs G
    J Chem Phys; 2021 Feb; 154(8):084303. PubMed ID: 33639753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Strong Transversal s(TE) Exciton-Polaritons in C
    Despoja V; Marušić L
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic theory of exciton-polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions.
    Chuang YT; Hsu LY
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38501476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.
    Qian C; Wu S; Song F; Peng K; Xie X; Yang J; Xiao S; Steer MJ; Thayne IG; Tang C; Zuo Z; Jin K; Gu C; Xu X
    Phys Rev Lett; 2018 May; 120(21):213901. PubMed ID: 29883144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous emission of matter waves from a tunable open quantum system.
    Krinner L; Stewart M; Pazmiño A; Kwon J; Schneble D
    Nature; 2018 Jul; 559(7715):589-592. PubMed ID: 30046077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric bow-tie nanocavity.
    Lu Q; Shu FJ; Zou CL
    Opt Lett; 2013 Dec; 38(24):5311-4. PubMed ID: 24322245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.