BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28257117)

  • 1. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers.
    Meisrimler CN; Wienkoop S; Lüthje S
    Proteomes; 2017 Mar; 5(1):. PubMed ID: 28257117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.
    Meisrimler CN; Wienkoop S; Lyon D; Geilfus CM; Lüthje S
    J Proteomics; 2016 May; 140():13-23. PubMed ID: 27012544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes.
    Meisrimler CN; Menckhoff L; Kukavica BM; Lüthje S
    Front Plant Sci; 2015; 6():849. PubMed ID: 26539198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits.
    Zhao J; Bodner G; Rewald B
    Front Plant Sci; 2016; 7():1864. PubMed ID: 27999587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum).
    Li X; Li Y; Qu M; Xiao H; Feng Y; Liu J; Wu L; Yu M
    Front Plant Sci; 2016; 7():39. PubMed ID: 26870060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high coverage reference transcriptome assembly of pea (Pisum sativum L.) mycorrhizal roots.
    Afonin AM; Leppyanen IV; Kulaeva OA; Shtark OY; Tikhonovich IA; Dolgikh EA; Zhukov VA
    Vavilovskii Zhurnal Genet Selektsii; 2020 Jul; 24(4):331-339. PubMed ID: 33659815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cultivar-specific leghaemoglobin components in Pisum sativum.
    Ulrich K; Lentzsch P; Seyfarth W
    New Phytol; 1997 Oct; 137(2):285-291. PubMed ID: 33863172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Agroinfiltration in Pisum sativum Provides a New Tool for Studying the Salivary Protein Functions in the Pea Aphid Complex.
    Guy E; Boulain H; Aigu Y; Le Pennec C; Chawki K; Morlière S; Schädel K; Kunert G; Simon JC; Sugio A
    Front Plant Sci; 2016; 7():1171. PubMed ID: 27555856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trait Expression and Environmental Responses of Pea (
    Carlson-Nilsson U; Aloisi K; Vågen IM; Rajala A; Mølmann JB; Rasmussen SK; Niemi M; Wojciechowska E; Pärssinen P; Poulsen G; Leino MW
    Front Plant Sci; 2021; 12():688067. PubMed ID: 34394142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings.
    Mondal S; Kumar M; Haque S; Kundu D
    Environ Health Toxicol; 2017; 32():e2017011. PubMed ID: 28728354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root Differentiation of Agricultural Plant Cultivars and Proveniences Using FTIR Spectroscopy.
    Legner N; Meinen C; Rauber R
    Front Plant Sci; 2018; 9():748. PubMed ID: 29951073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed Metabolism and Pathogen Resistance Enhancement in
    Ranjbar Sistani N; Desalegn G; Kaul HP; Wienkoop S
    Front Plant Sci; 2020; 11():872. PubMed ID: 32612631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Untangling the Pea Root Rot Complex Reveals Microbial Markers for Plant Health.
    Wille L; Kurmann M; Messmer MM; Studer B; Hohmann P
    Front Plant Sci; 2021; 12():737820. PubMed ID: 34712258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of glucose/mannose-specific isolectins in pea (Pisum sativum L.) seedlings.
    Díaz CL; Hosselet M; Logman GJ; van Driessche E; Lugtenberg BJ; Kijne JW
    Planta; 1990 Jul; 181(4):451-61. PubMed ID: 24196924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Pisum sativum Germ Plasm with Resistance to Root Rot Caused by Multiple Strains of Aphanomyces euteiches.
    Malvick DK; Percich JA
    Plant Dis; 1999 Jan; 83(1):51-54. PubMed ID: 30845440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of Microsomal Membrane Proteins in Roots of an Aluminum-Resistant Cultivar of Triticum aestivum L. under Conditions of Aluminum Stress.
    Basu A; Basu U; Taylor GJ
    Plant Physiol; 1994 Mar; 104(3):1007-1013. PubMed ID: 12232144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heritable Variation in Pea for Resistance Against a Root Rot Complex and Its Characterization by Amplicon Sequencing.
    Wille L; Messmer MM; Bodenhausen N; Studer B; Hohmann P
    Front Plant Sci; 2020; 11():542153. PubMed ID: 33224157
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Leppyanen IV; Kirienko AN; Dolgikh EA
    PeerJ; 2019; 7():e6552. PubMed ID: 30863680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Root Rot Resistance QTLs in Pea Using
    Williamson-Benavides BA; Sharpe RM; Nelson G; Bodah ET; Porter LD; Dhingra A
    Front Genet; 2021; 12():629267. PubMed ID: 34421980
    [No Abstract]   [Full Text] [Related]  

  • 20.
    Mobley ML; Kruse AS; McNickle GG
    Plant Direct; 2022 Oct; 6(10):e411. PubMed ID: 36284734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.