These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28257567)

  • 1. Hybrid Nanoscopy of Hybrid Nanomaterials.
    Bondia P; Jurado R; Casado S; Domínguez-Vera JM; Gálvez N; Flors C
    Small; 2017 May; 13(17):. PubMed ID: 28257567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples.
    Bondia P; Casado S; Flors C
    Methods Mol Biol; 2017; 1663():105-113. PubMed ID: 28924662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlative dual-alternating-color photoswitching fluorescence imaging and AFM enable ultrastructural analyses of complex structures with nanoscale resolution.
    Wang J; Wang Z; Xu Y; Wang X; Yang Z; Wang H; Tian Z
    Nanoscale; 2020 Aug; 12(33):17203-17212. PubMed ID: 32789405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures.
    Jurado R; Castello F; Bondia P; Casado S; Flors C; Cuesta R; Domínguez-Vera JM; Orte A; Gálvez N
    Nanoscale; 2016 May; 8(18):9648-56. PubMed ID: 27103107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlative nanoscopy: A multimodal approach to molecular resolution.
    Jadavi S; Bianchini P; Cavalleri O; Dante S; Canale C; Diaspro A
    Microsc Res Tech; 2021 Oct; 84(10):2472-2482. PubMed ID: 33955625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts.
    Monserrate A; Casado S; Flors C
    Chemphyschem; 2014 Mar; 15(4):647-50. PubMed ID: 24273067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Correlative Microscopy: Bridging the Gap between Single Molecule Localization Microscopy and Atomic Force Microscopy.
    Odermatt PD; Shivanandan A; Deschout H; Jankele R; Nievergelt AP; Feletti L; Davidson MW; Radenovic A; Fantner GE
    Nano Lett; 2015 Aug; 15(8):4896-904. PubMed ID: 26121585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Fluorescence Imaging of Single Amyloid Fibrils.
    Dalal V; Bhattacharya M; Narang D; Sharma PK; Mukhopadhyay S
    J Phys Chem Lett; 2012 Jul; 3(13):1783-7. PubMed ID: 26291859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.
    Tomitori M; Sasahara A
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i11-i12. PubMed ID: 25359799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization.
    Andany SH; Hlawacek G; Hummel S; Brillard C; Kangül M; Fantner GE
    Beilstein J Nanotechnol; 2020; 11():1272-1279. PubMed ID: 32953371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferric Ions Inhibit the Amyloid Fibrillation of β-Lactoglobulin at High Temperature.
    Guzzi R; Rizzuti B; Labate C; Zappone B; De Santo MP
    Biomacromolecules; 2015 Jun; 16(6):1794-801. PubMed ID: 25989053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force Microscopy.
    Frederickx W; Rocha S; Fujita Y; Kennes K; De Keersmaecker H; De Feyter S; Uji-I H; Vanderlinden W
    ACS Nano; 2018 Jan; 12(1):168-177. PubMed ID: 29257876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-resolution fluorescent materials: an insight into design and bioimaging applications.
    Yang Z; Sharma A; Qi J; Peng X; Lee DY; Hu R; Lin D; Qu J; Kim JS
    Chem Soc Rev; 2016 Aug; 45(17):4651-67. PubMed ID: 27296269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a flow field on amyloid fibrillogenesis in a β-lactoglobulin solution.
    Sharma RK; Furusawa K; Fukui A; Sasaki N
    Int J Biol Macromol; 2014 Sep; 70():490-7. PubMed ID: 25062994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
    Johnson SA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(3):266-81. PubMed ID: 25298332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution molecular and functional imaging of nanoscale architectures in life and materials science.
    Habuchi S
    Front Bioeng Biotechnol; 2014; 2():20. PubMed ID: 25152893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography.
    Mochalov KE; Chistyakov AA; Solovyeva DO; Mezin AV; Oleinikov VA; Vaskan IS; Molinari M; Agapov II; Nabiev I; Efimov AE
    Ultramicroscopy; 2017 Nov; 182():118-123. PubMed ID: 28672183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.
    Hauser M; Wojcik M; Kim D; Mahmoudi M; Li W; Xu K
    Chem Rev; 2017 Jun; 117(11):7428-7456. PubMed ID: 28045508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.