These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28257567)

  • 21. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy.
    Zhou L; Cai M; Tong T; Wang H
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28441775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy.
    Wang L; Wang H; Wagner M; Yan Y; Jakob DS; Xu XG
    Sci Adv; 2017 Jun; 3(6):e1700255. PubMed ID: 28691096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials.
    Greene ME; Kinser CR; Kramer DE; Pingree LS; Hersam MC
    Microsc Res Tech; 2004 Aug; 64(5-6):415-34. PubMed ID: 15549695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization.
    Flors C
    Biopolymers; 2011 May; 95(5):290-7. PubMed ID: 21184489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticles as Nonfluorescent Analogues of Fluorophores for Optical Nanoscopy.
    Hennig S; Mönkemöller V; Böger C; Müller M; Huser T
    ACS Nano; 2015 Jun; 9(6):6196-205. PubMed ID: 25950994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Super-resolution visible photoactivated atomic force microscopy.
    Lee S; Kwon O; Jeon M; Song J; Shin S; Kim H; Jo M; Rim T; Doh J; Kim S; Son J; Kim Y; Kim C
    Light Sci Appl; 2017 Nov; 6(11):e17080. PubMed ID: 30167212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unveiling a Hidden Event in Fluorescence Correlative Microscopy by AFM Nanomechanical Analysis.
    Galluzzi M; Zhang B; Zhang H; Wang L; Lin Y; Yu XF; Chu Z; Li J
    Front Mol Biosci; 2021; 8():669361. PubMed ID: 34026842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microscopic characterization of peptide nanostructures.
    Mammadov R; Tekinay AB; Dana A; Guler MO
    Micron; 2012 Feb; 43(2-3):69-84. PubMed ID: 21821422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CLAFEM: Correlative light atomic force electron microscopy.
    Janel S; Werkmeister E; Bongiovanni A; Lafont F; Barois N
    Methods Cell Biol; 2017; 140():165-185. PubMed ID: 28528632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Observation of the Distribution of Gelatin in Calcium Carbonate Crystals by Super-Resolution Fluorescence Microscopy.
    Fu M; Wang A; Zhang X; Dai L; Li J
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):908-11. PubMed ID: 26630671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small organic molecule templating synthesis of organic-inorganic hybrid materials: their nanostructures and properties.
    Yao HB; Gao MR; Yu SH
    Nanoscale; 2010 Mar; 2(3):323-34. PubMed ID: 20644814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.
    Altman EI; Baykara MZ; Schwarz UD
    Acc Chem Res; 2015 Sep; 48(9):2640-8. PubMed ID: 26301490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon.
    Dong M; Hovgaard MB; Mamdouh W; Xu S; Otzen DE; Besenbacher F
    Nanotechnology; 2008 Sep; 19(38):384013. PubMed ID: 21832572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials.
    Mochalov KE; Efimov AE; Bobrovsky A; Agapov II; Chistyakov AA; Oleinikov V; Sukhanova A; Nabiev I
    ACS Nano; 2013 Oct; 7(10):8953-62. PubMed ID: 23991901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.
    Owen RJ; Heyes CD; Knebel D; Röcker C; Nienhaus GU
    Biopolymers; 2006 Jul; 82(4):410-4. PubMed ID: 16302196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption at liquid interfaces induces amyloid fibril bending and ring formation.
    Jordens S; Riley EE; Usov I; Isa L; Olmsted PD; Mezzenga R
    ACS Nano; 2014 Nov; 8(11):11071-9. PubMed ID: 25338060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.