These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28257840)

  • 1. Non-invasive imaging of the levels and effects of glutathione on the redox status of mouse brain using electron paramagnetic resonance imaging.
    Emoto MC; Matsuoka Y; Yamada KI; Sato-Akaba H; Fujii HG
    Biochem Biophys Res Commun; 2017 Apr; 485(4):802-806. PubMed ID: 28257840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.
    Emoto MC; Yamato M; Sato-Akaba H; Yamada K; Fujii HG
    Neurosci Lett; 2015 Nov; 608():40-4. PubMed ID: 26453762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in the distribution and time course of blood-brain barrier-permeative nitroxides in the mouse head with EPR imaging: visualization of blood flow in a mouse model of ischemia.
    Emoto MC; Sato-Akaba H; Hirata H; Fujii HG
    Free Radic Biol Med; 2014 Sep; 74():222-8. PubMed ID: 25014567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive mapping of glutathione levels in mouse brains by in vivo electron paramagnetic resonance (EPR) imaging: Applied to a kindling mouse model.
    Emoto MC; Sato-Akaba H; Matsuoka Y; Yamada KI; Fujii HG
    Neurosci Lett; 2019 Jan; 690():6-10. PubMed ID: 30290249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain imaging in methamphetamine-treated mice using a nitroxide contrast agent for EPR imaging of the redox status and a gadolinium contrast agent for MRI observation of blood-brain barrier function.
    Emoto MC; Yamato M; Sato-Akaba H; Yamada K; Matsuoka Y; Fujii HG
    Free Radic Res; 2015; 49(8):1038-47. PubMed ID: 25968953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive mapping of the redox status in septic mouse by in vivo electron paramagnetic resonance imaging.
    Fujii HG; Sato-Akaba H; Emoto MC; Itoh K; Ishihara Y; Hirata H
    Magn Reson Imaging; 2013 Jan; 31(1):130-8. PubMed ID: 22902472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron paramagnetic resonance studies on nitroxide radical 2,2,5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin.
    Fuchs J; Groth N; Herrling T; Zimmer G
    Free Radic Biol Med; 1997; 22(6):967-76. PubMed ID: 9034235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of redox status in a brain-disease mouse model by three-dimensional EPR imaging.
    Fujii H; Sato-Akaba H; Kawanishi K; Hirata H
    Magn Reson Med; 2011 Jan; 65(1):295-303. PubMed ID: 20860000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional electron paramagnetic resonance imaging of mice using ascorbic acid sensitive nitroxide imaging probes.
    Sato-Akaba H; Emoto MC; Yamada KI; Koshino H; Fujii HG
    Free Radic Res; 2021 Oct; 55(9-10):950-957. PubMed ID: 34632934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility and assessment of non-invasive in vivo redox status using electron paramagnetic resonance imaging.
    Yamada KI; Kuppusamy P; English S; Yoo J; Irie A; Subramanian S; Mitchell JB; Krishna MC
    Acta Radiol; 2002 Jul; 43(4):433-40. PubMed ID: 12225490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEMPOL increases NAD(+) and improves redox imbalance in obese mice.
    Yamato M; Kawano K; Yamanaka Y; Saiga M; Yamada K
    Redox Biol; 2016 Aug; 8():316-22. PubMed ID: 26942863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels.
    Kuppusamy P; Li H; Ilangovan G; Cardounel AJ; Zweier JL; Yamada K; Krishna MC; Mitchell JB
    Cancer Res; 2002 Jan; 62(1):307-12. PubMed ID: 11782393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early detection of redox imbalance in the APPswe/PS1dE9 mouse model of Alzheimer's disease by in vivo electron paramagnetic resonance imaging.
    Emoto MC; Sato-Akaba H; Hamaue N; Kawanishi K; Koshino H; Shimohama S; Fujii HG
    Free Radic Biol Med; 2021 Aug; 172():9-18. PubMed ID: 34058322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione.
    Bobko AA; Kirilyuk IA; Grigor'ev IA; Zweier JL; Khramtsov VV
    Free Radic Biol Med; 2007 Feb; 42(3):404-12. PubMed ID: 17210453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of oxidative stress in the brain of a transgenic mouse model of Alzheimer disease by in vivo electron paramagnetic resonance imaging.
    Matsumura A; Emoto MC; Suzuki S; Iwahara N; Hisahara S; Kawamata J; Suzuki H; Yamauchi A; Sato-Akaba H; Fujii HG; Shimohama S
    Free Radic Biol Med; 2015 Aug; 85():165-73. PubMed ID: 25912481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Molecular Electron Paramagnetic Resonance-Based Spectroscopy and Imaging of Tumor Microenvironment and Redox Using Functional Paramagnetic Probes.
    Khramtsov VV
    Antioxid Redox Signal; 2018 May; 28(15):1365-1377. PubMed ID: 29132215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the intracellular redox status of tumors with magnetic resonance imaging and redox-sensitive contrast agents.
    Hyodo F; Matsumoto K; Matsumoto A; Mitchell JB; Krishna MC
    Cancer Res; 2006 Oct; 66(20):9921-8. PubMed ID: 17047054
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.