These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 28257845)
1. An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis. Zheng X; Li SY; Zhao GP; Wang J Biochem Biophys Res Commun; 2017 Apr; 485(4):768-774. PubMed ID: 28257845 [TBL] [Abstract][Full Text] [Related]
2. A CRISPR-Cas9 Assisted Non-Homologous End-Joining Strategy for One-step Engineering of Bacterial Genome. Su T; Liu F; Gu P; Jin H; Chang Y; Wang Q; Liang Q; Qi Q Sci Rep; 2016 Nov; 6():37895. PubMed ID: 27883076 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli. Huang C; Ding T; Wang J; Wang X; Guo L; Wang J; Zhu L; Bi C; Zhang X; Ma X; Huo YX Appl Microbiol Biotechnol; 2019 Oct; 103(20):8497-8509. PubMed ID: 31501938 [TBL] [Abstract][Full Text] [Related]
4. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. Yan MY; Li SS; Ding XY; Guo XP; Jin Q; Sun YC mBio; 2020 Jan; 11(1):. PubMed ID: 31992616 [TBL] [Abstract][Full Text] [Related]
5. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion. Liu C; Yue Y; Xue Y; Zhou C; Ma Y Microb Cell Fact; 2023 Oct; 22(1):211. PubMed ID: 37838676 [TBL] [Abstract][Full Text] [Related]
6. A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis. Sun B; Yang J; Yang S; Ye RD; Chen D; Jiang Y Biotechnol J; 2018 Sep; 13(9):e1700588. PubMed ID: 30039929 [TBL] [Abstract][Full Text] [Related]
7. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
8. Mycobacterium tuberculosis and Mycobacterium marinum non-homologous end-joining proteins can function together to join DNA ends in Escherichia coli. Wright DG; Castore R; Shi R; Mallick A; Ennis DG; Harrison L Mutagenesis; 2017 Mar; 32(2):245-256. PubMed ID: 27613236 [TBL] [Abstract][Full Text] [Related]
9. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Altenbuchner J Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565 [TBL] [Abstract][Full Text] [Related]
10. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria. Wojcik EA; Brzostek A; Bacolla A; Mackiewicz P; Vasquez KM; Korycka-Machala M; Jaworski A; Dziadek J PLoS One; 2012; 7(12):e51064. PubMed ID: 23251422 [TBL] [Abstract][Full Text] [Related]
11. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939 [TBL] [Abstract][Full Text] [Related]
12. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Zhu L; Mon H; Xu J; Lee JM; Kusakabe T Sci Rep; 2015 Dec; 5():18103. PubMed ID: 26657947 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related]
14. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis. Shenkerman Y; Elharar Y; Vishkautzan M; Gur E Gene; 2014 Jan; 533(1):374-8. PubMed ID: 24100088 [TBL] [Abstract][Full Text] [Related]
15. Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9. Tu JL; Bai XY; Xu YL; Li N; Xu JW Appl Environ Microbiol; 2021 Nov; 87(23):e0151021. PubMed ID: 34524900 [TBL] [Abstract][Full Text] [Related]
16. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9. Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581 [TBL] [Abstract][Full Text] [Related]
17. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Cui L; Bikard D Nucleic Acids Res; 2016 May; 44(9):4243-51. PubMed ID: 27060147 [TBL] [Abstract][Full Text] [Related]
18. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. Tong Y; Charusanti P; Zhang L; Weber T; Lee SY ACS Synth Biol; 2015 Sep; 4(9):1020-9. PubMed ID: 25806970 [TBL] [Abstract][Full Text] [Related]
19. The phage T4 DNA ligase mediates bacterial chromosome DSBs repair as single component non-homologous end joining. Su T; Liu F; Chang Y; Guo Q; Wang J; Wang Q; Qi Q Synth Syst Biotechnol; 2019 Jun; 4(2):107-112. PubMed ID: 31193309 [TBL] [Abstract][Full Text] [Related]
20. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations. Li J; Sun J; Gao X; Wu Z; Shang G Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]