These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28257971)

  • 21. Auditory-somatosensory multisensory interactions in humans: dissociating detection and spatial discrimination.
    Sperdin HF; Cappe C; Murray MM
    Neuropsychologia; 2010 Nov; 48(13):3696-705. PubMed ID: 20833194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Body-environment integration: Temporal processing of tactile and auditory inputs along the schizophrenia continuum.
    Di Cosmo G; Costantini M; Ambrosini E; Salone A; Martinotti G; Corbo M; Di Giannantonio M; Ferri F
    J Psychiatr Res; 2021 Feb; 134():208-214. PubMed ID: 33418447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Representation and integration of multiple sensory inputs in primate superior colliculus.
    Wallace MT; Wilkinson LK; Stein BE
    J Neurophysiol; 1996 Aug; 76(2):1246-66. PubMed ID: 8871234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are alpha oscillations instrumental in multisensory synchrony perception?
    Bastiaansen M; Berberyan H; Stekelenburg JJ; Schoffelen JM; Vroomen J
    Brain Res; 2020 May; 1734():146744. PubMed ID: 32114057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The benefit of multisensory integration with biological motion signals.
    Mendonça C; Santos JA; López-Moliner J
    Exp Brain Res; 2011 Sep; 213(2-3):185-92. PubMed ID: 21424256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Prediction of Impact of a Looming Stimulus onto the Body Is Subserved by Multisensory Integration Mechanisms.
    Cléry J; Guipponi O; Odouard S; Pinède S; Wardak C; Ben Hamed S
    J Neurosci; 2017 Nov; 37(44):10656-10670. PubMed ID: 28993482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid temporal recalibration to visuo-tactile stimuli.
    Lange J; Kapala K; Krause H; Baumgarten TJ; Schnitzler A
    Exp Brain Res; 2018 Feb; 236(2):347-354. PubMed ID: 29143125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multisensory interaction in saccadic reaction time: a time-window-of-integration model.
    Colonius H; Diederich A
    J Cogn Neurosci; 2004; 16(6):1000-9. PubMed ID: 15298787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations.
    Senkowski D; Talsma D; Grigutsch M; Herrmann CS; Woldorff MG
    Neuropsychologia; 2007 Feb; 45(3):561-71. PubMed ID: 16542688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of temporal asynchrony on multisensory integration in the processing of asynchronous audio-visual stimuli of real-world events: an event-related potential study.
    Liu B; Jin Z; Wang Z; Gong C
    Neuroscience; 2011 Mar; 176():254-64. PubMed ID: 21185358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory adaptation improves tactile frequency perception.
    Crommett LE; Pérez-Bellido A; Yau JM
    J Neurophysiol; 2017 Mar; 117(3):1352-1362. PubMed ID: 28077668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal ventriloquism effect in European starlings: Evidence for two parallel processing pathways.
    Feenders G; Kato Y; Borzeszkowski KM; Klump GM
    Behav Neurosci; 2017 Aug; 131(4):337-47. PubMed ID: 28714719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait in younger and older adults during rhythmic auditory stimulation is influenced by groove, familiarity, beat perception, and synchronization demands.
    Ready EA; Holmes JD; Grahn JA
    Hum Mov Sci; 2022 Aug; 84():102972. PubMed ID: 35763974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct patterns of local oscillatory activity and functional connectivity underlie intersensory attention and temporal prediction.
    Keil J; Pomper U; Senkowski D
    Cortex; 2016 Jan; 74():277-88. PubMed ID: 26716405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective integration of auditory-visual looming cues by humans.
    Cappe C; Thut G; Romei V; Murray MM
    Neuropsychologia; 2009 Mar; 47(4):1045-52. PubMed ID: 19041883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synchronization dynamics modulates stride-to-stride fluctuations when walking to an invariant but not to a fractal-like stimulus.
    Vaz JR; Groff BR; Rowen DA; Knarr BA; Stergiou N
    Neurosci Lett; 2019 Jun; 704():28-35. PubMed ID: 30922850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multimodal sensory integration: Diminishing returns in rhythmic synchronization.
    Johnson V; Hsu WY; Ostrand AE; Gazzaley A; Zanto TP
    J Exp Psychol Hum Percept Perform; 2020 Oct; 46(10):1077-1087. PubMed ID: 32730071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of walked-upon materials in auditory, kinesthetic, haptic, and audio-haptic conditions.
    Giordano BL; Visell Y; Yao HY; Hayward V; Cooperstock JR; McAdams S
    J Acoust Soc Am; 2012 May; 131(5):4002-12. PubMed ID: 22559373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Musicians react faster and are better multisensory integrators.
    Landry SP; Champoux F
    Brain Cogn; 2017 Feb; 111():156-162. PubMed ID: 27978450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multisensory integration is independent of perceived simultaneity.
    Harrar V; Harris LR; Spence C
    Exp Brain Res; 2017 Mar; 235(3):763-775. PubMed ID: 27872958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.