BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28257999)

  • 21. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics.
    Hiew SH; Wang JK; Koh K; Yang H; Bacha A; Lin J; Yip YS; Vos MIG; Chen L; Sobota RM; Tan NS; Tay CY; Miserez A
    Acta Biomater; 2021 Dec; 136():111-123. PubMed ID: 34551327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supramolecular engineering of hydrogels for drug delivery.
    Bernhard S; Tibbitt MW
    Adv Drug Deliv Rev; 2021 Apr; 171():240-256. PubMed ID: 33561451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels.
    Yan C; Altunbas A; Yucel T; Nagarkar RP; Schneider JP; Pochan DJ
    Soft Matter; 2010 Oct; 6(20):5143-5156. PubMed ID: 21566690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling Doxorubicin Release from a Peptide Hydrogel through Fine-Tuning of Drug-Peptide Fiber Interactions.
    Elsawy MA; Wychowaniec JK; Castillo Díaz LA; Smith AM; Miller AF; Saiani A
    Biomacromolecules; 2022 Jun; 23(6):2624-2634. PubMed ID: 35543610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymorphism in self-assembly of peptide-based β-hairpin contributes to network morphology and hydrogel mechanical rigidity.
    Miller Y; Ma B; Nussinov R
    J Phys Chem B; 2015 Jan; 119(2):482-90. PubMed ID: 25545881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlations between structure, material properties and bioproperties in self-assembled beta-hairpin peptide hydrogels.
    Hule RA; Nagarkar RP; Altunbas A; Ramay HR; Branco MC; Schneider JP; Pochan DJ
    Faraday Discuss; 2008; 139():251-64; discussion 309-25, 419-20. PubMed ID: 19048999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermosensitive polymeric hydrogels as drug delivery systems.
    Gong C; Qi T; Wei X; Qu Y; Wu Q; Luo F; Qian Z
    Curr Med Chem; 2013; 20(1):79-94. PubMed ID: 23092130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Biocompatible Therapeutic Catheter-Deliverable Hydrogel for In Situ Tissue Engineering.
    Steele AN; Stapleton LM; Farry JM; Lucian HJ; Paulsen MJ; Eskandari A; Hironaka CE; Thakore AD; Wang H; Yu AC; Chan D; Appel EA; Woo YJ
    Adv Healthc Mater; 2019 Mar; 8(5):e1801147. PubMed ID: 30714355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chitosan-based hydrogels for controlled, localized drug delivery.
    Bhattarai N; Gunn J; Zhang M
    Adv Drug Deliv Rev; 2010 Jan; 62(1):83-99. PubMed ID: 19799949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoresponsive hydrogels for biomedical applications.
    Tomatsu I; Peng K; Kros A
    Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1257-66. PubMed ID: 21745509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application.
    Zhu J; Han H; Ye TT; Li FX; Wang XL; Yu JY; Wu DQ
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30572689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational Design of Short Peptide-Based Hydrogels with MMP-2 Responsiveness for Controlled Anticancer Peptide Delivery.
    Chen C; Zhang Y; Hou Z; Cui X; Zhao Y; Xu H
    Biomacromolecules; 2017 Nov; 18(11):3563-3571. PubMed ID: 28828862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture.
    Jiang X; Yang X; Yang B; Zhang L; Lu A
    Carbohydr Polym; 2021 Dec; 273():118547. PubMed ID: 34560959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus.
    Ramachandran S; Tseng Y; Yu YB
    Biomacromolecules; 2005; 6(3):1316-21. PubMed ID: 15877347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery.
    Basu S; Pacelli S; Paul A
    Acta Biomater; 2020 Mar; 105():159-169. PubMed ID: 31972367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Synthesis and Self-Assembly of Peptide-PEG Conjugates: A Facile Method for the Construction of Fibrous Hydrogels.
    Asokan-Sheeja H; Awad K; Xu J; Le M; Nguyen JN; Nguyen N; Nguyen TP; Nguyen KT; Hong Y; Varanasi VG; Liu X; Dong H
    Biomacromolecules; 2024 May; 25(5):2814-2822. PubMed ID: 38598701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications.
    Ligorio C; Zhou M; Wychowaniec JK; Zhu X; Bartlam C; Miller AF; Vijayaraghavan A; Hoyland JA; Saiani A
    Acta Biomater; 2019 Jul; 92():92-103. PubMed ID: 31091473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs.
    McKenzie M; Betts D; Suh A; Bui K; Kim LD; Cho H
    Molecules; 2015 Nov; 20(11):20397-408. PubMed ID: 26580588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and primary characterization of self-assembled peptide-based hydrogels.
    Nagarkar RP; Schneider JP
    Methods Mol Biol; 2008; 474():61-77. PubMed ID: 19031061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.
    Liu C; Guo X; Ruan C; Hu H; Jiang BP; Liang H; Shen XC
    Acta Biomater; 2019 Sep; 96():281-294. PubMed ID: 31319202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.