BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 2825800)

  • 41. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions.
    Plagemann PG; Wohlhueter RM; Kraupp M
    Biochim Biophys Acta; 1985 Jul; 817(1):51-60. PubMed ID: 3873962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adenine nucleotide catabolism and adenosine formation in isolated human cardiomyocytes.
    Smolenski RT; Suitters A; Yacoub MH
    J Mol Cell Cardiol; 1992 Jan; 24(1):91-6. PubMed ID: 1564734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fructose-induced adenine nucleotide catabolism in isolated rat hepatocytes.
    Smith CM; Rovamo LM; Raivio KO
    Can J Biochem; 1977 Dec; 55(12):1237-40. PubMed ID: 597772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic fate of AMP, IMP, GMP and XMP in the cytosol of rat brain: an experimental and theoretical analysis.
    Torrecilla A; Marques AF; Buscalioni RD; Oliveira JM; Teixeira NA; Atencia EA; Günther Sillero MA; Sillero A
    J Neurochem; 2001 Mar; 76(5):1291-307. PubMed ID: 11238714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catabolic pathways of purine ribonucleotides and deoxyribonucleotides in lymphocytes.
    Cohen A; Barankiewicz J
    Proc Soc Exp Biol Med; 1985 Sep; 179(4):437-41. PubMed ID: 3875101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purine and pyrimidine metabolism in human muscle and cultured muscle cells.
    Jacobs AE; Oosterhof A; Veerkamp JH
    Biochim Biophys Acta; 1988 Jun; 970(2):130-6. PubMed ID: 2838095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy metabolism in adenosine deaminase-inhibited human erythrocytes.
    Buc HA; Thuillier L; Hamet M; Garreau F; Moncion A; Pérignon JL
    Clin Chim Acta; 1986 Apr; 156(1):61-9. PubMed ID: 3486057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle.
    Miller SG; Hafen PS; Law AS; Springer CB; Logsdon DL; O'Connell TM; Witczak CA; Brault JJ
    Metabolism; 2021 Oct; 123():154864. PubMed ID: 34400216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adenine nucleotide metabolism in contracting skeletal muscle.
    Tullson PC; Terjung RL
    Exerc Sport Sci Rev; 1991; 19():507-37. PubMed ID: 1936094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation.
    Matsumoto SS; Raivio KO; Seegmiller JE
    J Biol Chem; 1979 Sep; 254(18):8956-62. PubMed ID: 479172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distinct roles for recombinant cytosolic 5'-nucleotidase-I and -II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines.
    Sala-Newby GB; Freeman NV; Skladanowski AC; Newby AC
    J Biol Chem; 2000 Apr; 275(16):11666-71. PubMed ID: 10766785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Levels of adenosine deaminase AMP deaminase, and adenylate kinase in cultured human lymphoblast lines: exquisite sensitivity of AMP deaminase to adenosine deaminase inhibitors.
    Fishbein WN; Davis JI; Winkert JW; Strong DM
    Biochem Med; 1981 Dec; 26(3):377-86. PubMed ID: 6277304
    [No Abstract]   [Full Text] [Related]  

  • 53. Adenosine induction of rapid catabolism of adenine ribonucleotides and independent elevation of the ATP content in quiescent mouse fibroblasts.
    Klenow H; Ostergaard E
    J Cell Physiol; 1988 Dec; 137(3):565-70. PubMed ID: 3263974
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selective adenosine release from human B but not T lymphoid cell line.
    Barankiewicz J; Ronlov G; Jimenez R; Gruber HE
    J Biol Chem; 1990 Sep; 265(26):15738-43. PubMed ID: 2394745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and biochemical properties of 8-amino-6-fluoro-9-beta-D-ribofuranosyl-9H-purine.
    Secrist JA; Bennett LL; Allan PW; Rose LM; Chang CH; Montgomery JA
    J Med Chem; 1986 Oct; 29(10):2069-74. PubMed ID: 3489838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developmental changes in the activity of enzymes of purine metabolism in rat neuronal cells in culture and in whole brain.
    Brosh S; Sperling O; Bromberg Y; Sidi Y
    J Neurochem; 1990 May; 54(5):1776-81. PubMed ID: 2324747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elucidation of aberrant purine metabolism: application to hypoxanthine-guanine phosphoribosylstransferase- and adenosine kinase-deficient mutants, and IMP dehydrogenase- and adenosine deaminase-inhibited human lymphoblasts.
    Snyder FF; Trafzer RJ; Hershfield MS; Seegmiller JE
    Biochim Biophys Acta; 1980 Oct; 609(3):492-501. PubMed ID: 6108130
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The potentiation of adenine toxicity to Chinese hamster cells by coformycin: suppression in mutants with altered regulation of purine biosynthesis or increased adenylate-deaminase activity.
    Debatisse M; Berry M; Buttin G
    J Cell Physiol; 1981 Jan; 106(1):1-11. PubMed ID: 7204504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The deamination of adenosine and adenosine monophosphate in Plasmodium falciparum-infected human erythrocytes: in vitro use of 2'deoxycoformycin and AMP deaminase-deficient red cells.
    Roth E; Ogasawara N; Schulman S
    Blood; 1989 Aug; 74(3):1121-5. PubMed ID: 2665862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adenine nucleotide degradation in striated muscle.
    Tullson PC; Terjung RL
    Int J Sports Med; 1990 May; 11 Suppl 2():S47-55. PubMed ID: 2193893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.