BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28258025)

  • 1. Coherence transfer and electron T
    Marsh D
    J Magn Reson; 2017 Apr; 277():86-94. PubMed ID: 28258025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H relaxation dispersion in solutions of nitroxide radicals: influence of electron spin relaxation.
    Kruk D; Korpała A; Kubica A; Kowalewski J; Rössler EA; Moscicki J
    J Chem Phys; 2013 Mar; 138(12):124506. PubMed ID: 23556735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate constants for saturation-recovery EPR and ELDOR of
    Marsh D
    J Magn Reson; 2023 May; 350():107414. PubMed ID: 36913743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.
    Marsh D
    J Magn Reson; 2016 Nov; 272():166-171. PubMed ID: 27712989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals.
    Armstrong BD; Han S
    J Chem Phys; 2007 Sep; 127(10):104508. PubMed ID: 17867762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group.
    Kuzhelev AA; Strizhakov RK; Krumkacheva OA; Polienko YF; Morozov DA; Shevelev GY; Pyshnyi DV; Kirilyuk IA; Fedin MV; Bagryanskaya EG
    J Magn Reson; 2016 May; 266():1-7. PubMed ID: 26987109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.
    Nielsen RD; Canaan S; Gladden JA; Gelb MH; Mailer C; Robinson BH
    J Magn Reson; 2004 Jul; 169(1):129-63. PubMed ID: 15183364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-field EPR and ESEEM investigation of the nitrogen quadrupole interaction of nitroxide spin labels in disordered solids: toward differentiation between polarity and proticity matrix effects on protein function.
    Savitsky A; Dubinskii AA; Plato M; Grishin YA; Zimmermann H; Möbius K
    J Phys Chem B; 2008 Jul; 112(30):9079-90. PubMed ID: 18593147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-field ELDOR-detected NMR study of a nitroxide radical in disordered solids: towards characterization of heterogeneity of microenvironments in spin-labeled systems.
    Nalepa A; Möbius K; Lubitz W; Savitsky A
    J Magn Reson; 2014 May; 242():203-13. PubMed ID: 24685717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems.
    Chang Z; Halle B
    J Chem Phys; 2017 Aug; 147(8):084203. PubMed ID: 28863524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H relaxation dispersion in solutions of nitroxide radicals: effects of hyperfine interactions with 14N and 15N nuclei.
    Kruk D; Korpała A; Kowalewski J; Rössler EA; Moscicki J
    J Chem Phys; 2012 Jul; 137(4):044512. PubMed ID: 22852636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ESR lineshape and 1H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals--joint analysis.
    Kruk D; Hoffmann SK; Goslar J; Lijewski S; Kubica-Misztal A; Korpała A; Oglodek I; Kowalewski J; Rössler EA; Moscicki J
    J Chem Phys; 2013 Dec; 139(24):244502. PubMed ID: 24387377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR.
    Kunjir NC; Reginsson GW; Schiemann O; Sigurdsson ST
    Phys Chem Chem Phys; 2013 Dec; 15(45):19673-85. PubMed ID: 24135783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction fields and solvent dependence of the EPR parameters of nitroxides: the microenvironment of spin labels.
    Marsh D
    J Magn Reson; 2008 Jan; 190(1):60-7. PubMed ID: 17977036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azaadamantyl nitroxide spin label: complexation with β-cyclodextrin and electron spin relaxation.
    Eaton SS; Rajca A; Yang Z; Eaton GR
    Free Radic Res; 2018 Mar; 52(3):319-326. PubMed ID: 28946790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.
    Livshits VA; Páli T; Marsh D
    J Magn Reson; 1998 Sep; 134(1):113-23. PubMed ID: 9740736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular order and T
    Marsh D
    J Magn Reson; 2018 May; 290():38-45. PubMed ID: 29550514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide.
    Kuzhelev AA; Krumkacheva OA; Shevelev GY; Yulikov M; Fedin MV; Bagryanskaya EG
    Phys Chem Chem Phys; 2018 Apr; 20(15):10224-10230. PubMed ID: 29594278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures.
    Raitsimring A; Dalaloyan A; Collauto A; Feintuch A; Meade T; Goldfarb D
    J Magn Reson; 2014 Nov; 248():71-80. PubMed ID: 25442776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; van Wyk JA
    Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.