These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 2825809)
1. Distinction between the intermediates in Na+-ATPase and Na+,K+-ATPase reactions. II. Exchange and hydrolysis kinetics at micromolar nucleotide concentrations. Plesner L; Plesner IW Biochim Biophys Acta; 1988 Jan; 937(1):63-72. PubMed ID: 2825809 [TBL] [Abstract][Full Text] [Related]
2. Distinction between the intermediates in Na+-ATPase and Na+,K+-ATPase reactions. I. Exchange and hydrolysis kinetics at millimolar nucleotide concentrations. Plesner L; Plesner IW Biochim Biophys Acta; 1988 Jan; 937(1):51-62. PubMed ID: 2825808 [TBL] [Abstract][Full Text] [Related]
3. Sodium ions, acting at high-affinity extracellular sites, inhibit sodium-ATPase activity of the sodium pump by slowing dephosphorylation. Beaugé LA; Glynn IM J Physiol; 1979 Apr; 289():17-31. PubMed ID: 222896 [TBL] [Abstract][Full Text] [Related]
4. (Na+ + K+)-ATPase: confirmation of the three-pool model for the phosphointermediates of Na+-ATPase activity. Estimation of the enzyme-ATP dissociation rate constant. Klodos I; Nørby JG Biochim Biophys Acta; 1987 Feb; 897(2):302-14. PubMed ID: 3028481 [TBL] [Abstract][Full Text] [Related]
5. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model. Plesner IW; Plesner L; Nørby JG; Klodos I Biochim Biophys Acta; 1981 May; 643(2):483-94. PubMed ID: 6261818 [TBL] [Abstract][Full Text] [Related]
6. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type. Yamaguchi M; Tonomura Y J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933 [TBL] [Abstract][Full Text] [Related]
7. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. II. Kinetic characterization of phosphointermediates. Klodos I; Nørby JG; Plesner IW Biochim Biophys Acta; 1981 May; 643(2):463-82. PubMed ID: 6261817 [TBL] [Abstract][Full Text] [Related]
8. An unexpected effect of ATP on the ratio between activity and phosphoenzyme level of Na+/K(+)-ATPase in steady state. Schwarzbaum PJ; Kaufman SB; Rossi RC; Garrahan PJ Biochim Biophys Acta; 1995 Jan; 1233(1):33-40. PubMed ID: 7833347 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous binding of phosphate and TNP-ADP to FITC-modified NA+,K(+)-ATPase. Scheiner-Bobis G; Antonipillai J; Farley RA Biochemistry; 1993 Sep; 32(37):9592-9. PubMed ID: 8396968 [TBL] [Abstract][Full Text] [Related]
10. [32P]ATP synthesis in steady state from [32P]Pi and ADP by Na+/K(+)-ATPase from ox brain and pig kidney. Activation by K+. Plesner L; Karlsmose B; Lüscher ME Biochim Biophys Acta; 1990 Sep; 1040(2):167-74. PubMed ID: 2169305 [TBL] [Abstract][Full Text] [Related]
11. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. Plesner IW; Plesner L Biochim Biophys Acta; 1981 Nov; 648(2):231-46. PubMed ID: 6272852 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of Na+-ATPase: influence of Na+ and K+ on substrate binding and hydrolysis. Plesner L; Plesner IW Biochim Biophys Acta; 1985 Aug; 818(2):222-34. PubMed ID: 3161541 [TBL] [Abstract][Full Text] [Related]
13. Effects of mono and divalent cations on total and partial reactions catalysed by pig kidney Na,K-ATPase. Beaugé L; Campos MA J Physiol; 1986 Jun; 375():1-25. PubMed ID: 3025425 [TBL] [Abstract][Full Text] [Related]
14. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. Fukushima Y; Yamada S; Nakao M J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400 [TBL] [Abstract][Full Text] [Related]
15. Bovine brain Na+,K+-stimulated ATP phosphohydrolase studied by a rapid-mixing technique. K+-stimulated liberation of [32P] orthophosphate from [32P] phosphoenzyme and resolution of the dephosphorylation into two phases. Mårdh S Biochim Biophys Acta; 1975 Jun; 391(2):448-63. PubMed ID: 125103 [TBL] [Abstract][Full Text] [Related]
16. The partial reactions of the Na(+)- and Na(+) + K(+)-activated adenosine triphosphatases. Froehlich JP; Fendler K Soc Gen Physiol Ser; 1991; 46():227-47. PubMed ID: 1653982 [TBL] [Abstract][Full Text] [Related]
17. The (Na + K+)-dependent ATPase. Mode of inhibition of ADP/ATP exchange activity by MgC12. Robinson JD Biochim Biophys Acta; 1976 Sep; 440(3):711-22. PubMed ID: 134746 [TBL] [Abstract][Full Text] [Related]
18. Hydrolysis of adenylyl imidodiphosphate in the presence of Na+ + Mg2+ by (Na+ + K+)-activated ATPase. Schuurmans Stekhoven FM; Swarts HG; De Pont JJ; Bonting SL Biochim Biophys Acta; 1983 Dec; 736(1):73-8. PubMed ID: 6317029 [TBL] [Abstract][Full Text] [Related]
19. [Na+, K+ -ATPase: causes of activation of K+ -phosphatase reaction by nucleotides]. Svinukhova IA Ukr Biokhim Zh (1978); 1983; 55(4):386-91. PubMed ID: 6137891 [TBL] [Abstract][Full Text] [Related]
20. Analysis of phosphoryl transfer mechanism and catalytic centre geometries of transport ATPase by means of spin-labelled ATP. Streckenbach B; Schwarz D; Repke KR Biochim Biophys Acta; 1980 Sep; 601(1):34-46. PubMed ID: 6250610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]