BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28258643)

  • 1. Charge transfer dissociation of phosphocholines: gas-phase ion/ion reactions between helium cations and phospholipid cations.
    Li P; Jackson GP
    J Mass Spectrom; 2017 May; 52(5):271-282. PubMed ID: 28258643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-Down Charge Transfer Dissociation (CTD) of Gas-Phase Insulin: Evidence of a One-Step, Two-Electron Oxidation Mechanism.
    Li P; Kreft I; Jackson GP
    J Am Soc Mass Spectrom; 2018 Feb; 29(2):284-296. PubMed ID: 28786096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations.
    Hoffmann WD; Jackson GP
    J Am Soc Mass Spectrom; 2014 Nov; 25(11):1939-43. PubMed ID: 25231159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses.
    Li P; Jackson GP
    J Am Soc Mass Spectrom; 2017 Jul; 28(7):1271-1281. PubMed ID: 28091811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions.
    Thomas MC; Mitchell TW; Harman DG; Deeley JM; Nealon JR; Blanksby SJ
    Anal Chem; 2008 Jan; 80(1):303-11. PubMed ID: 18062677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Assessment of Six Different Reagent Gases for Charge Transfer Dissociation (CTD) of Biological Ions.
    Sasiene ZJ; Mendis PM; Jackson GP
    Int J Mass Spectrom; 2021 Apr; 462():. PubMed ID: 33679212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethylation Enhancement Using
    Betancourt SK; Canez CR; Shields SWJ; Manthorpe JM; Smith JC; McLuckey SA
    Anal Chem; 2017 Sep; 89(17):9452-9458. PubMed ID: 28764333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer dissociation of doubly sodiated glycerophosphocholine lipids.
    Liang X; Liu J; LeBlanc Y; Covey T; Ptak AC; Brenna JT; McLuckey SA
    J Am Soc Mass Spectrom; 2007 Oct; 18(10):1783-8. PubMed ID: 17719238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RADICAL-INDUCED FRAGMENTATION OF PHOSPHOLIPID CATIONS USING METASTABLE ATOM-ACTIVATED DISSOCIATION MASS SPECTROMETRY (MAD-MS).
    Deimler RE; Sander M; Jackson GP
    Int J Mass Spectrom; 2015 Nov; 390():178-186. PubMed ID: 26644782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-Phase Chemical Separation of Phosphatidylcholine and Phosphatidylethanolamine Cations via Charge Inversion Ion/Ion Chemistry.
    Rojas-Betancourt S; Stutzman JR; Londry FA; Blanksby SJ; McLuckey SA
    Anal Chem; 2015 Nov; 87(22):11255-62. PubMed ID: 26477819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron capture dissociation of complexes of diacylglycerophosphocholine and divalent metal ions: competition between charge reduction and radical induced phospholipid fragmentation.
    James PF; Perugini MA; O'Hair RA
    J Am Soc Mass Spectrom; 2008 Jul; 19(7):978-86. PubMed ID: 18455426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of β-1,4- and β-1,3-Linkages in Native Oligosaccharides via Charge Transfer Dissociation Mass Spectrometry.
    Buck-Wiese H; Fanuel M; Liebeke M; Le Mai Hoang K; Pardo-Vargas A; Seeberger PH; Hehemann JH; Rogniaux H; Jackson GP; Ropartz D
    J Am Soc Mass Spectrom; 2020 Jun; 31(6):1249-1259. PubMed ID: 32309938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistage Mass Spectrometry of Phospholipids using Collision-Induced Dissociation (CID) and Metastable Atom-Activated Dissociation (MAD).
    Li P; Hoffmann WD; Jackson GP
    Int J Mass Spectrom; 2016 Jun; 403():1-7. PubMed ID: 27547107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Analysis of Phospholipid Using Hydrogen Abstraction Dissociation and Oxygen Attachment Dissociation in Tandem Mass Spectrometry.
    Takahashi H; Shimabukuro Y; Asakawa D; Yamauchi S; Sekiya S; Iwamoto S; Wada M; Tanaka K
    Anal Chem; 2018 Jun; 90(12):7230-7238. PubMed ID: 29792798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid differentiation of isomeric lipids by photodissociation mass spectrometry of fatty acid derivatives.
    Pham HT; Trevitt AJ; Mitchell TW; Blanksby SJ
    Rapid Commun Mass Spectrom; 2013 Apr; 27(7):805-15. PubMed ID: 23495027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transfer dissociation of a branched glycan with alkali and alkaline earth metal adducts.
    Sasiene ZJ; Ropartz D; Rogniaux H; Jackson GP
    J Mass Spectrom; 2021 Jul; 56(7):e4774. PubMed ID: 34180110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative Polarity Helium Charge Transfer Dissociation Tandem Mass Spectrometry: Radical-Initiated Fragmentation of Complex Polysulfated Anions.
    Ropartz D; Li P; Jackson GP; Rogniaux H
    Anal Chem; 2017 Apr; 89(7):3824-3828. PubMed ID: 28300396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for generating peptide radical cations via ion/ion reactions.
    Gilbert JD; Fisher CM; Bu J; Prentice BM; Redwine JG; McLuckey SA
    J Mass Spectrom; 2015 Feb; 50(2):418-26. PubMed ID: 25800024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous collision induced dissociation of the charge reduced parent ion during electron capture dissociation.
    Bushey JM; Baba T; Glish GL
    Anal Chem; 2009 Aug; 81(15):6156-64. PubMed ID: 19572558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge Transfer Dissociation of Complex Oligosaccharides: Comparison with Collision-Induced Dissociation and Extreme Ultraviolet Dissociative Photoionization.
    Ropartz D; Li P; Fanuel M; Giuliani A; Rogniaux H; Jackson GP
    J Am Soc Mass Spectrom; 2016 Oct; 27(10):1614-9. PubMed ID: 27582116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.