These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1093 related articles for article (PubMed ID: 28258692)
1. LAG3 (CD223) as a cancer immunotherapy target. Andrews LP; Marciscano AE; Drake CG; Vignali DA Immunol Rev; 2017 Mar; 276(1):80-96. PubMed ID: 28258692 [TBL] [Abstract][Full Text] [Related]
2. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas. Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905 [TBL] [Abstract][Full Text] [Related]
3. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Qi Y; Chen L; Liu Q; Kong X; Fang Y; Wang J Front Immunol; 2020; 11():563258. PubMed ID: 33488573 [TBL] [Abstract][Full Text] [Related]
4. Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples. Liu Q; Qi Y; Zhai J; Kong X; Wang X; Wang Z; Fang Y; Wang J Front Immunol; 2021; 12():599207. PubMed ID: 34267742 [TBL] [Abstract][Full Text] [Related]
6. LAG3 (CD223) and autoimmunity: Emerging evidence. Hu S; Liu X; Li T; Li Z; Hu F J Autoimmun; 2020 Aug; 112():102504. PubMed ID: 32576412 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory receptors as targets for cancer immunotherapy. Turnis ME; Andrews LP; Vignali DA Eur J Immunol; 2015 Jul; 45(7):1892-905. PubMed ID: 26018646 [TBL] [Abstract][Full Text] [Related]
8. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction. Bhagwat B; Cherwinski H; Sathe M; Seghezzi W; McClanahan TK; de Waal Malefyt R; Willingham A J Immunol Methods; 2018 May; 456():7-14. PubMed ID: 29427592 [TBL] [Abstract][Full Text] [Related]
9. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding. Andrews LP; Somasundaram A; Moskovitz JM; Szymczak-Workman AL; Liu C; Cillo AR; Lin H; Normolle DP; Moynihan KD; Taniuchi I; Irvine DJ; Kirkwood JM; Lipson EJ; Ferris RL; Bruno TC; Workman CJ; Vignali DAA Sci Immunol; 2020 Jul; 5(49):. PubMed ID: 32680952 [TBL] [Abstract][Full Text] [Related]
10. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Huang RY; Eppolito C; Lele S; Shrikant P; Matsuzaki J; Odunsi K Oncotarget; 2015 Sep; 6(29):27359-77. PubMed ID: 26318293 [TBL] [Abstract][Full Text] [Related]
11. Enhanced antitumor immunity through sequential targeting of PI3Kδ and LAG3. Lauder SN; Smart K; Kersemans V; Allen D; Scott J; Pires A; Milutinovic S; Somerville M; Smart S; Kinchesh P; Lopez-Guadamillas E; Hughes E; Jones E; Scurr M; Godkin A; Friedman LS; Vanhaesebroeck B; Gallimore A J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33093155 [TBL] [Abstract][Full Text] [Related]
12. The multi-specific V Edwards CJ; Sette A; Cox C; Di Fiore B; Wyre C; Sydoruk D; Yadin D; Hayes P; Stelter S; Bartlett PD; Zuazo M; Garcia-Granda MJ; Benedetti G; Fiaska S; Birkett NR; Teng Y; Enever C; Arasanz H; Bocanegra A; Chocarro L; Fernandez G; Vera R; Archer B; Osuch I; Lewandowska M; Surani YM; Kochan G; Escors D; Legg J; Pierce AJ Br J Cancer; 2022 May; 126(8):1168-1177. PubMed ID: 34969998 [TBL] [Abstract][Full Text] [Related]
13. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Dougall WC; Kurtulus S; Smyth MJ; Anderson AC Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695 [TBL] [Abstract][Full Text] [Related]
14. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8 Kim HD; Song GW; Park S; Jung MK; Kim MH; Kang HJ; Yoo C; Yi K; Kim KH; Eo S; Moon DB; Hong SM; Ju YS; Shin EC; Hwang S; Park SH Gastroenterology; 2018 Dec; 155(6):1936-1950.e17. PubMed ID: 30145359 [TBL] [Abstract][Full Text] [Related]
15. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. Mariuzza RA; Shahid S; Karade SS J Biol Chem; 2024 May; 300(5):107241. PubMed ID: 38556085 [TBL] [Abstract][Full Text] [Related]
16. Clinical blockade of PD1 and LAG3--potential mechanisms of action. Nguyen LT; Ohashi PS Nat Rev Immunol; 2015 Jan; 15(1):45-56. PubMed ID: 25534622 [TBL] [Abstract][Full Text] [Related]
17. LAG3 and PD1 Regulate CD8+ T Cell in Diffuse Large B-cell Lymphoma Patients. Liu Y; Guo X; Zhan L; Wang L; Wang X; Jiang M Comput Math Methods Med; 2021; 2021():4468140. PubMed ID: 34422089 [TBL] [Abstract][Full Text] [Related]
18. Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy. Andrews LP; Cillo AR; Karapetyan L; Kirkwood JM; Workman CJ; Vignali DAA Clin Cancer Res; 2022 Dec; 28(23):5030-5039. PubMed ID: 35579997 [TBL] [Abstract][Full Text] [Related]
19. Roles, function and relevance of LAG3 in HIV infection. Graydon CG; Balasko AL; Fowke KR PLoS Pathog; 2019 Jan; 15(1):e1007429. PubMed ID: 30653605 [TBL] [Abstract][Full Text] [Related]
20. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Shapiro M; Herishanu Y; Katz BZ; Dezorella N; Sun C; Kay S; Polliack A; Avivi I; Wiestner A; Perry C Haematologica; 2017 May; 102(5):874-882. PubMed ID: 28154084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]